mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* added scripts for char-based lang prep training scripts * added `Zipformer` recipe for commonvoice --------- Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
860 lines
29 KiB
Python
Executable File
860 lines
29 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang,
|
|
# Fangjun Kuang,
|
|
# Zengwei Yao,
|
|
# Zengrui Jin,)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
Usage:
|
|
./zipformer/streaming_decode.py \
|
|
--epoch 28 \
|
|
--avg 15 \
|
|
--causal 1 \
|
|
--chunk-size 32 \
|
|
--left-context-frames 256 \
|
|
--exp-dir ./zipformer/exp \
|
|
--decoding-method greedy_search \
|
|
--num-decode-streams 2000
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
from pathlib import Path
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import k2
|
|
import numpy as np
|
|
import sentencepiece as spm
|
|
import torch
|
|
from asr_datamodule import CommonVoiceAsrDataModule
|
|
from decode_stream import DecodeStream
|
|
from kaldifeat import Fbank, FbankOptions
|
|
from lhotse import CutSet
|
|
from streaming_beam_search import (
|
|
fast_beam_search_one_best,
|
|
greedy_search,
|
|
modified_beam_search,
|
|
)
|
|
from torch import Tensor, nn
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
from train import add_model_arguments, get_model, get_params
|
|
|
|
from icefall.checkpoint import (
|
|
average_checkpoints,
|
|
average_checkpoints_with_averaged_model,
|
|
find_checkpoints,
|
|
load_checkpoint,
|
|
)
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
make_pad_mask,
|
|
setup_logger,
|
|
store_transcripts,
|
|
str2bool,
|
|
write_error_stats,
|
|
)
|
|
|
|
LOG_EPS = math.log(1e-10)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=28,
|
|
help="""It specifies the checkpoint to use for decoding.
|
|
Note: Epoch counts from 1.
|
|
You can specify --avg to use more checkpoints for model averaging.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=15,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch' and '--iter'",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-averaged-model",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Whether to load averaged model. Currently it only supports "
|
|
"using --epoch. If True, it would decode with the averaged model "
|
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
"Actually only the models with epoch number of `epoch-avg` and "
|
|
"`epoch` are loaded for averaging. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="zipformer/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
default="data/lang_bpe_500/bpe.model",
|
|
help="Path to the BPE model",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--decoding-method",
|
|
type=str,
|
|
default="greedy_search",
|
|
help="""Supported decoding methods are:
|
|
greedy_search
|
|
modified_beam_search
|
|
fast_beam_search
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num_active_paths",
|
|
type=int,
|
|
default=4,
|
|
help="""An interger indicating how many candidates we will keep for each
|
|
frame. Used only when --decoding-method is modified_beam_search.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--beam",
|
|
type=float,
|
|
default=4,
|
|
help="""A floating point value to calculate the cutoff score during beam
|
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
|
`beam` in Kaldi.
|
|
Used only when --decoding-method is fast_beam_search""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-contexts",
|
|
type=int,
|
|
default=4,
|
|
help="""Used only when --decoding-method is
|
|
fast_beam_search""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-states",
|
|
type=int,
|
|
default=32,
|
|
help="""Used only when --decoding-method is
|
|
fast_beam_search""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--context-size",
|
|
type=int,
|
|
default=2,
|
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-decode-streams",
|
|
type=int,
|
|
default=2000,
|
|
help="The number of streams that can be decoded parallel.",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def get_init_states(
|
|
model: nn.Module,
|
|
batch_size: int = 1,
|
|
device: torch.device = torch.device("cpu"),
|
|
) -> List[torch.Tensor]:
|
|
"""
|
|
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
|
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
|
states[-2] is the cached left padding for ConvNeXt module,
|
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
|
states[-1] is processed_lens of shape (batch,), which records the number
|
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
|
"""
|
|
states = model.encoder.get_init_states(batch_size, device)
|
|
|
|
embed_states = model.encoder_embed.get_init_states(batch_size, device)
|
|
states.append(embed_states)
|
|
|
|
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
|
states.append(processed_lens)
|
|
|
|
return states
|
|
|
|
|
|
def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
|
|
"""Stack list of zipformer states that correspond to separate utterances
|
|
into a single emformer state, so that it can be used as an input for
|
|
zipformer when those utterances are formed into a batch.
|
|
|
|
Args:
|
|
state_list:
|
|
Each element in state_list corresponding to the internal state
|
|
of the zipformer model for a single utterance. For element-n,
|
|
state_list[n] is a list of cached tensors of all encoder layers. For layer-i,
|
|
state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1,
|
|
cached_val2, cached_conv1, cached_conv2).
|
|
state_list[n][-2] is the cached left padding for ConvNeXt module,
|
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
|
state_list[n][-1] is processed_lens of shape (batch,), which records the number
|
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
|
|
|
Note:
|
|
It is the inverse of :func:`unstack_states`.
|
|
"""
|
|
batch_size = len(state_list)
|
|
assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0])
|
|
tot_num_layers = (len(state_list[0]) - 2) // 6
|
|
|
|
batch_states = []
|
|
for layer in range(tot_num_layers):
|
|
layer_offset = layer * 6
|
|
# cached_key: (left_context_len, batch_size, key_dim)
|
|
cached_key = torch.cat(
|
|
[state_list[i][layer_offset] for i in range(batch_size)], dim=1
|
|
)
|
|
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
|
cached_nonlin_attn = torch.cat(
|
|
[state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1
|
|
)
|
|
# cached_val1: (left_context_len, batch_size, value_dim)
|
|
cached_val1 = torch.cat(
|
|
[state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1
|
|
)
|
|
# cached_val2: (left_context_len, batch_size, value_dim)
|
|
cached_val2 = torch.cat(
|
|
[state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1
|
|
)
|
|
# cached_conv1: (#batch, channels, left_pad)
|
|
cached_conv1 = torch.cat(
|
|
[state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0
|
|
)
|
|
# cached_conv2: (#batch, channels, left_pad)
|
|
cached_conv2 = torch.cat(
|
|
[state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0
|
|
)
|
|
batch_states += [
|
|
cached_key,
|
|
cached_nonlin_attn,
|
|
cached_val1,
|
|
cached_val2,
|
|
cached_conv1,
|
|
cached_conv2,
|
|
]
|
|
|
|
cached_embed_left_pad = torch.cat(
|
|
[state_list[i][-2] for i in range(batch_size)], dim=0
|
|
)
|
|
batch_states.append(cached_embed_left_pad)
|
|
|
|
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
|
|
batch_states.append(processed_lens)
|
|
|
|
return batch_states
|
|
|
|
|
|
def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
|
|
"""Unstack the zipformer state corresponding to a batch of utterances
|
|
into a list of states, where the i-th entry is the state from the i-th
|
|
utterance in the batch.
|
|
|
|
Note:
|
|
It is the inverse of :func:`stack_states`.
|
|
|
|
Args:
|
|
batch_states: A list of cached tensors of all encoder layers. For layer-i,
|
|
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
|
|
cached_conv1, cached_conv2).
|
|
state_list[-2] is the cached left padding for ConvNeXt module,
|
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
|
states[-1] is processed_lens of shape (batch,), which records the number
|
|
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
|
|
|
Returns:
|
|
state_list: A list of list. Each element in state_list corresponding to the internal state
|
|
of the zipformer model for a single utterance.
|
|
"""
|
|
assert (len(batch_states) - 2) % 6 == 0, len(batch_states)
|
|
tot_num_layers = (len(batch_states) - 2) // 6
|
|
|
|
processed_lens = batch_states[-1]
|
|
batch_size = processed_lens.shape[0]
|
|
|
|
state_list = [[] for _ in range(batch_size)]
|
|
|
|
for layer in range(tot_num_layers):
|
|
layer_offset = layer * 6
|
|
# cached_key: (left_context_len, batch_size, key_dim)
|
|
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
|
|
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
|
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
|
|
chunks=batch_size, dim=1
|
|
)
|
|
# cached_val1: (left_context_len, batch_size, value_dim)
|
|
cached_val1_list = batch_states[layer_offset + 2].chunk(
|
|
chunks=batch_size, dim=1
|
|
)
|
|
# cached_val2: (left_context_len, batch_size, value_dim)
|
|
cached_val2_list = batch_states[layer_offset + 3].chunk(
|
|
chunks=batch_size, dim=1
|
|
)
|
|
# cached_conv1: (#batch, channels, left_pad)
|
|
cached_conv1_list = batch_states[layer_offset + 4].chunk(
|
|
chunks=batch_size, dim=0
|
|
)
|
|
# cached_conv2: (#batch, channels, left_pad)
|
|
cached_conv2_list = batch_states[layer_offset + 5].chunk(
|
|
chunks=batch_size, dim=0
|
|
)
|
|
for i in range(batch_size):
|
|
state_list[i] += [
|
|
cached_key_list[i],
|
|
cached_nonlin_attn_list[i],
|
|
cached_val1_list[i],
|
|
cached_val2_list[i],
|
|
cached_conv1_list[i],
|
|
cached_conv2_list[i],
|
|
]
|
|
|
|
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
|
|
for i in range(batch_size):
|
|
state_list[i].append(cached_embed_left_pad_list[i])
|
|
|
|
processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0)
|
|
for i in range(batch_size):
|
|
state_list[i].append(processed_lens_list[i])
|
|
|
|
return state_list
|
|
|
|
|
|
def streaming_forward(
|
|
features: Tensor,
|
|
feature_lens: Tensor,
|
|
model: nn.Module,
|
|
states: List[Tensor],
|
|
chunk_size: int,
|
|
left_context_len: int,
|
|
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
|
"""
|
|
Returns encoder outputs, output lengths, and updated states.
|
|
"""
|
|
cached_embed_left_pad = states[-2]
|
|
(x, x_lens, new_cached_embed_left_pad) = model.encoder_embed.streaming_forward(
|
|
x=features,
|
|
x_lens=feature_lens,
|
|
cached_left_pad=cached_embed_left_pad,
|
|
)
|
|
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
|
|
|
src_key_padding_mask = make_pad_mask(x_lens)
|
|
|
|
# processed_mask is used to mask out initial states
|
|
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
|
x.size(0), left_context_len
|
|
)
|
|
processed_lens = states[-1] # (batch,)
|
|
# (batch, left_context_size)
|
|
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
|
# Update processed lengths
|
|
new_processed_lens = processed_lens + x_lens
|
|
|
|
# (batch, left_context_size + chunk_size)
|
|
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
|
|
|
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
|
encoder_states = states[:-2]
|
|
(
|
|
encoder_out,
|
|
encoder_out_lens,
|
|
new_encoder_states,
|
|
) = model.encoder.streaming_forward(
|
|
x=x,
|
|
x_lens=x_lens,
|
|
states=encoder_states,
|
|
src_key_padding_mask=src_key_padding_mask,
|
|
)
|
|
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
|
|
|
new_states = new_encoder_states + [
|
|
new_cached_embed_left_pad,
|
|
new_processed_lens,
|
|
]
|
|
return encoder_out, encoder_out_lens, new_states
|
|
|
|
|
|
def decode_one_chunk(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
decode_streams: List[DecodeStream],
|
|
) -> List[int]:
|
|
"""Decode one chunk frames of features for each decode_streams and
|
|
return the indexes of finished streams in a List.
|
|
|
|
Args:
|
|
params:
|
|
It's the return value of :func:`get_params`.
|
|
model:
|
|
The neural model.
|
|
decode_streams:
|
|
A List of DecodeStream, each belonging to a utterance.
|
|
Returns:
|
|
Return a List containing which DecodeStreams are finished.
|
|
"""
|
|
device = model.device
|
|
chunk_size = int(params.chunk_size)
|
|
left_context_len = int(params.left_context_frames)
|
|
|
|
features = []
|
|
feature_lens = []
|
|
states = []
|
|
processed_lens = [] # Used in fast-beam-search
|
|
|
|
for stream in decode_streams:
|
|
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
|
|
features.append(feat)
|
|
feature_lens.append(feat_len)
|
|
states.append(stream.states)
|
|
processed_lens.append(stream.done_frames)
|
|
|
|
feature_lens = torch.tensor(feature_lens, device=device)
|
|
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
|
|
|
# Make sure the length after encoder_embed is at least 1.
|
|
# The encoder_embed subsample features (T - 7) // 2
|
|
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
|
tail_length = chunk_size * 2 + 7 + 2 * 3
|
|
if features.size(1) < tail_length:
|
|
pad_length = tail_length - features.size(1)
|
|
feature_lens += pad_length
|
|
features = torch.nn.functional.pad(
|
|
features,
|
|
(0, 0, 0, pad_length),
|
|
mode="constant",
|
|
value=LOG_EPS,
|
|
)
|
|
|
|
states = stack_states(states)
|
|
|
|
encoder_out, encoder_out_lens, new_states = streaming_forward(
|
|
features=features,
|
|
feature_lens=feature_lens,
|
|
model=model,
|
|
states=states,
|
|
chunk_size=chunk_size,
|
|
left_context_len=left_context_len,
|
|
)
|
|
|
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
|
|
|
if params.decoding_method == "greedy_search":
|
|
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
|
elif params.decoding_method == "fast_beam_search":
|
|
processed_lens = torch.tensor(processed_lens, device=device)
|
|
processed_lens = processed_lens + encoder_out_lens
|
|
fast_beam_search_one_best(
|
|
model=model,
|
|
encoder_out=encoder_out,
|
|
processed_lens=processed_lens,
|
|
streams=decode_streams,
|
|
beam=params.beam,
|
|
max_states=params.max_states,
|
|
max_contexts=params.max_contexts,
|
|
)
|
|
elif params.decoding_method == "modified_beam_search":
|
|
modified_beam_search(
|
|
model=model,
|
|
streams=decode_streams,
|
|
encoder_out=encoder_out,
|
|
num_active_paths=params.num_active_paths,
|
|
)
|
|
else:
|
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
|
|
|
states = unstack_states(new_states)
|
|
|
|
finished_streams = []
|
|
for i in range(len(decode_streams)):
|
|
decode_streams[i].states = states[i]
|
|
decode_streams[i].done_frames += encoder_out_lens[i]
|
|
if decode_streams[i].done:
|
|
finished_streams.append(i)
|
|
|
|
return finished_streams
|
|
|
|
|
|
def decode_dataset(
|
|
cuts: CutSet,
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
sp: spm.SentencePieceProcessor,
|
|
decoding_graph: Optional[k2.Fsa] = None,
|
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
|
"""Decode dataset.
|
|
|
|
Args:
|
|
cuts:
|
|
Lhotse Cutset containing the dataset to decode.
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The neural model.
|
|
sp:
|
|
The BPE model.
|
|
decoding_graph:
|
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
|
only when --decoding_method is fast_beam_search.
|
|
Returns:
|
|
Return a dict, whose key may be "greedy_search" if greedy search
|
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
|
Its value is a list of tuples. Each tuple contains two elements:
|
|
The first is the reference transcript, and the second is the
|
|
predicted result.
|
|
"""
|
|
device = model.device
|
|
|
|
opts = FbankOptions()
|
|
opts.device = device
|
|
opts.frame_opts.dither = 0
|
|
opts.frame_opts.snip_edges = False
|
|
opts.frame_opts.samp_freq = 16000
|
|
opts.mel_opts.num_bins = 80
|
|
|
|
log_interval = 100
|
|
|
|
decode_results = []
|
|
# Contain decode streams currently running.
|
|
decode_streams = []
|
|
for num, cut in enumerate(cuts):
|
|
# each utterance has a DecodeStream.
|
|
initial_states = get_init_states(model=model, batch_size=1, device=device)
|
|
decode_stream = DecodeStream(
|
|
params=params,
|
|
cut_id=cut.id,
|
|
initial_states=initial_states,
|
|
decoding_graph=decoding_graph,
|
|
device=device,
|
|
)
|
|
|
|
audio: np.ndarray = cut.load_audio()
|
|
# audio.shape: (1, num_samples)
|
|
assert len(audio.shape) == 2
|
|
assert audio.shape[0] == 1, "Should be single channel"
|
|
assert audio.dtype == np.float32, audio.dtype
|
|
|
|
# The trained model is using normalized samples
|
|
# - this is to avoid sending [-32k,+32k] signal in...
|
|
# - some lhotse AudioTransform classes can make the signal
|
|
# be out of range [-1, 1], hence the tolerance 10
|
|
assert (
|
|
np.abs(audio).max() <= 10
|
|
), "Should be normalized to [-1, 1], 10 for tolerance..."
|
|
|
|
samples = torch.from_numpy(audio).squeeze(0)
|
|
|
|
fbank = Fbank(opts)
|
|
feature = fbank(samples.to(device))
|
|
decode_stream.set_features(feature, tail_pad_len=30)
|
|
decode_stream.ground_truth = cut.supervisions[0].text
|
|
|
|
decode_streams.append(decode_stream)
|
|
|
|
while len(decode_streams) >= params.num_decode_streams:
|
|
finished_streams = decode_one_chunk(
|
|
params=params, model=model, decode_streams=decode_streams
|
|
)
|
|
for i in sorted(finished_streams, reverse=True):
|
|
decode_results.append(
|
|
(
|
|
decode_streams[i].id,
|
|
decode_streams[i].ground_truth.split(),
|
|
sp.decode(decode_streams[i].decoding_result()).split(),
|
|
)
|
|
)
|
|
del decode_streams[i]
|
|
|
|
if num % log_interval == 0:
|
|
logging.info(f"Cuts processed until now is {num}.")
|
|
|
|
# decode final chunks of last sequences
|
|
while len(decode_streams):
|
|
finished_streams = decode_one_chunk(
|
|
params=params, model=model, decode_streams=decode_streams
|
|
)
|
|
for i in sorted(finished_streams, reverse=True):
|
|
decode_results.append(
|
|
(
|
|
decode_streams[i].id,
|
|
decode_streams[i].ground_truth.split(),
|
|
sp.decode(decode_streams[i].decoding_result()).split(),
|
|
)
|
|
)
|
|
del decode_streams[i]
|
|
|
|
if params.decoding_method == "greedy_search":
|
|
key = "greedy_search"
|
|
elif params.decoding_method == "fast_beam_search":
|
|
key = (
|
|
f"beam_{params.beam}_"
|
|
f"max_contexts_{params.max_contexts}_"
|
|
f"max_states_{params.max_states}"
|
|
)
|
|
elif params.decoding_method == "modified_beam_search":
|
|
key = f"num_active_paths_{params.num_active_paths}"
|
|
else:
|
|
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
|
return {key: decode_results}
|
|
|
|
|
|
def save_results(
|
|
params: AttributeDict,
|
|
test_set_name: str,
|
|
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
|
):
|
|
test_set_wers = dict()
|
|
for key, results in results_dict.items():
|
|
recog_path = (
|
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
)
|
|
results = sorted(results)
|
|
store_transcripts(filename=recog_path, texts=results)
|
|
logging.info(f"The transcripts are stored in {recog_path}")
|
|
|
|
# The following prints out WERs, per-word error statistics and aligned
|
|
# ref/hyp pairs.
|
|
errs_filename = (
|
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
)
|
|
with open(errs_filename, "w") as f:
|
|
wer = write_error_stats(
|
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
|
)
|
|
test_set_wers[key] = wer
|
|
|
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
|
|
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
|
errs_info = (
|
|
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
)
|
|
with open(errs_info, "w") as f:
|
|
print("settings\tWER", file=f)
|
|
for key, val in test_set_wers:
|
|
print("{}\t{}".format(key, val), file=f)
|
|
|
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
|
note = "\tbest for {}".format(test_set_name)
|
|
for key, val in test_set_wers:
|
|
s += "{}\t{}{}\n".format(key, val, note)
|
|
note = ""
|
|
logging.info(s)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
CommonVoiceAsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
|
|
|
if params.iter > 0:
|
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
|
else:
|
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
|
|
|
assert params.causal, params.causal
|
|
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
|
|
assert (
|
|
"," not in params.left_context_frames
|
|
), "left_context_frames should be one value in decoding."
|
|
params.suffix += f"-chunk-{params.chunk_size}"
|
|
params.suffix += f"-left-context-{params.left_context_frames}"
|
|
|
|
# for fast_beam_search
|
|
if params.decoding_method == "fast_beam_search":
|
|
params.suffix += f"-beam-{params.beam}"
|
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
|
params.suffix += f"-max-states-{params.max_states}"
|
|
|
|
if params.use_averaged_model:
|
|
params.suffix += "-use-averaged-model"
|
|
|
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
|
logging.info("Decoding started")
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"Device: {device}")
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(params.bpe_model)
|
|
|
|
# <blk> and <unk> is defined in local/train_bpe_model.py
|
|
params.blank_id = sp.piece_to_id("<blk>")
|
|
params.unk_id = sp.piece_to_id("<unk>")
|
|
params.vocab_size = sp.get_piece_size()
|
|
|
|
logging.info(params)
|
|
|
|
logging.info("About to create model")
|
|
model = get_model(params)
|
|
|
|
if not params.use_averaged_model:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if start >= 0:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
else:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg + 1
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg + 1:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
filename_start = filenames[-1]
|
|
filename_end = filenames[0]
|
|
logging.info(
|
|
"Calculating the averaged model over iteration checkpoints"
|
|
f" from {filename_start} (excluded) to {filename_end}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
else:
|
|
assert params.avg > 0, params.avg
|
|
start = params.epoch - params.avg
|
|
assert start >= 1, start
|
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
logging.info(
|
|
f"Calculating the averaged model over epoch range from "
|
|
f"{start} (excluded) to {params.epoch}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
|
|
model.to(device)
|
|
model.eval()
|
|
model.device = device
|
|
|
|
decoding_graph = None
|
|
if params.decoding_method == "fast_beam_search":
|
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
commonvoice = CommonVoiceAsrDataModule(args)
|
|
|
|
test_cuts = commonvoice.test_cuts()
|
|
dev_cuts = commonvoice.dev_cuts()
|
|
|
|
test_sets = ["test", "dev"]
|
|
test_cuts = [test_cuts, dev_cuts]
|
|
|
|
for test_set, test_cut in zip(test_sets, test_cuts):
|
|
results_dict = decode_dataset(
|
|
cuts=test_cut,
|
|
params=params,
|
|
model=model,
|
|
sp=sp,
|
|
decoding_graph=decoding_graph,
|
|
)
|
|
|
|
save_results(
|
|
params=params,
|
|
test_set_name=test_set,
|
|
results_dict=results_dict,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|