mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Zipformer recipe for CommonVoice (#1546)
* added scripts for char-based lang prep training scripts * added `Zipformer` recipe for commonvoice --------- Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
This commit is contained in:
parent
87843e9382
commit
f2e36ec414
@ -1,20 +1,91 @@
|
||||
## Results
|
||||
### GigaSpeech BPE training results (Pruned Stateless Transducer 7)
|
||||
|
||||
### Commonvoice Cantonese (zh-HK) Char training results (Zipformer)
|
||||
|
||||
See #1546 for more details.
|
||||
|
||||
Number of model parameters: 72526519, i.e., 72.53 M
|
||||
|
||||
The best CER, for CommonVoice 16.1 (cv-corpus-16.1-2023-12-06/zh-HK) is below:
|
||||
|
||||
| | Dev | Test | Note |
|
||||
|----------------------|-------|------|--------------------|
|
||||
| greedy_search | 1.17 | 1.22 | --epoch 24 --avg 5 |
|
||||
| modified_beam_search | 0.98 | 1.11 | --epoch 24 --avg 5 |
|
||||
| fast_beam_search | 1.08 | 1.27 | --epoch 24 --avg 5 |
|
||||
|
||||
When doing the cross-corpus validation on [MDCC](https://arxiv.org/abs/2201.02419) (w/o blank penalty),
|
||||
the best CER is below:
|
||||
|
||||
| | Dev | Test | Note |
|
||||
|----------------------|-------|------|--------------------|
|
||||
| greedy_search | 42.40 | 42.03| --epoch 24 --avg 5 |
|
||||
| modified_beam_search | 39.73 | 39.19| --epoch 24 --avg 5 |
|
||||
| fast_beam_search | 42.14 | 41.98| --epoch 24 --avg 5 |
|
||||
|
||||
When doing the cross-corpus validation on [MDCC](https://arxiv.org/abs/2201.02419) (with blank penalty set to 2.2),
|
||||
the best CER is below:
|
||||
|
||||
| | Dev | Test | Note |
|
||||
|----------------------|-------|------|----------------------------------------|
|
||||
| greedy_search | 39.19 | 39.09| --epoch 24 --avg 5 --blank-penalty 2.2 |
|
||||
| modified_beam_search | 37.73 | 37.65| --epoch 24 --avg 5 --blank-penalty 2.2 |
|
||||
| fast_beam_search | 37.73 | 37.74| --epoch 24 --avg 5 --blank-penalty 2.2 |
|
||||
|
||||
To reproduce the above result, use the following commands for training:
|
||||
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES="0,1"
|
||||
./zipformer/train_char.py \
|
||||
--world-size 2 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 1 \
|
||||
--use-fp16 1 \
|
||||
--exp-dir zipformer/exp \
|
||||
--cv-manifest-dir data/zh-HK/fbank \
|
||||
--language zh-HK \
|
||||
--use-validated-set 1 \
|
||||
--context-size 1 \
|
||||
--max-duration 1000
|
||||
```
|
||||
|
||||
and the following commands for decoding:
|
||||
|
||||
```bash
|
||||
for method in greedy_search modified_beam_search fast_beam_search; do
|
||||
./zipformer/decode_char.py \
|
||||
--epoch 24 \
|
||||
--avg 5 \
|
||||
--decoding-method $method \
|
||||
--exp-dir zipformer/exp \
|
||||
--cv-manifest-dir data/zh-HK/fbank \
|
||||
--context-size 1 \
|
||||
--language zh-HK
|
||||
done
|
||||
```
|
||||
|
||||
Detailed experimental results and pre-trained model are available at:
|
||||
<https://huggingface.co/zrjin/icefall-asr-commonvoice-zh-HK-zipformer-2024-03-20>
|
||||
|
||||
|
||||
### CommonVoice English (en) BPE training results (Pruned Stateless Transducer 7)
|
||||
|
||||
#### [pruned_transducer_stateless7](./pruned_transducer_stateless7)
|
||||
|
||||
See #997 for more details.
|
||||
See #997 for more details.
|
||||
|
||||
Number of model parameters: 70369391, i.e., 70.37 M
|
||||
|
||||
Note that the result is obtained using GigaSpeech transcript trained BPE model
|
||||
|
||||
The best WER, as of 2023-04-17, for Common Voice English 13.0 (cv-corpus-13.0-2023-03-09/en) is below:
|
||||
|
||||
Results are:
|
||||
|
||||
| | Dev | Test |
|
||||
|----------------------|-------|-------|
|
||||
| greedy search | 9.96 | 12.54 |
|
||||
| modified beam search | 9.86 | 12.48 |
|
||||
| greedy_search | 9.96 | 12.54 |
|
||||
| modified_beam_search | 9.86 | 12.48 |
|
||||
|
||||
To reproduce the above result, use the following commands for training:
|
||||
|
||||
@ -55,10 +126,6 @@ and the following commands for decoding:
|
||||
Pretrained model is available at
|
||||
<https://huggingface.co/yfyeung/icefall-asr-cv-corpus-13.0-2023-03-09-en-pruned-transducer-stateless7-2023-04-17>
|
||||
|
||||
The tensorboard log for training is available at
|
||||
<https://tensorboard.dev/experiment/j4pJQty6RMOkMJtRySREKw/>
|
||||
|
||||
|
||||
### Commonvoice (fr) BPE training results (Pruned Stateless Transducer 7_streaming)
|
||||
|
||||
#### [pruned_transducer_stateless7_streaming](./pruned_transducer_stateless7_streaming)
|
||||
@ -73,9 +140,9 @@ Results are:
|
||||
|
||||
| decoding method | Test |
|
||||
|----------------------|-------|
|
||||
| greedy search | 9.95 |
|
||||
| modified beam search | 9.57 |
|
||||
| fast beam search | 9.67 |
|
||||
| greedy_search | 9.95 |
|
||||
| modified_beam_search | 9.57 |
|
||||
| fast_beam_search | 9.67 |
|
||||
|
||||
Note: This best result is trained on the full librispeech and gigaspeech, and then fine-tuned on the full commonvoice.
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (Yifan Yang)
|
||||
# Copyright 2023-2024 Xiaomi Corp. (Yifan Yang,
|
||||
# Zengrui Jin,)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -17,7 +18,6 @@
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
@ -30,6 +30,8 @@ from lhotse import (
|
||||
set_caching_enabled,
|
||||
)
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
@ -41,6 +43,14 @@ torch.set_num_interop_threads(1)
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--subset",
|
||||
type=str,
|
||||
default="train",
|
||||
choices=["train", "validated", "invalidated"],
|
||||
help="""Dataset parts to compute fbank. """,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--language",
|
||||
type=str,
|
||||
@ -66,28 +76,35 @@ def get_args():
|
||||
"--num-splits",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The number of splits of the train subset",
|
||||
help="The number of splits of the subset",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--start",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Process pieces starting from this number (inclusive).",
|
||||
help="Process pieces starting from this number (included).",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--stop",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="Stop processing pieces until this number (exclusive).",
|
||||
help="Stop processing pieces until this number (excluded).",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--perturb-speed",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""Perturb speed with factor 0.9 and 1.1 on train subset.""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def compute_fbank_commonvoice_splits(args):
|
||||
subset = "train"
|
||||
subset = args.subset
|
||||
num_splits = args.num_splits
|
||||
language = args.language
|
||||
output_dir = f"data/{language}/fbank/cv-{language}_{subset}_split_{num_splits}"
|
||||
@ -130,6 +147,10 @@ def compute_fbank_commonvoice_splits(args):
|
||||
keep_overlapping=False, min_duration=None
|
||||
)
|
||||
|
||||
if args.perturb_speed:
|
||||
logging.info(f"Doing speed perturb")
|
||||
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1)
|
||||
|
||||
logging.info("Computing features")
|
||||
cut_set = cut_set.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
|
1
egs/commonvoice/ASR/local/prepare_char.py
Symbolic link
1
egs/commonvoice/ASR/local/prepare_char.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../aishell/ASR/local/prepare_char.py
|
1
egs/commonvoice/ASR/local/prepare_lang.py
Symbolic link
1
egs/commonvoice/ASR/local/prepare_lang.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/prepare_lang.py
|
1
egs/commonvoice/ASR/local/prepare_lang_fst.py
Symbolic link
1
egs/commonvoice/ASR/local/prepare_lang_fst.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/prepare_lang_fst.py
|
@ -21,7 +21,7 @@ import re
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from lhotse import CutSet, SupervisionSegment
|
||||
from lhotse import CutSet
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
|
||||
@ -52,14 +52,20 @@ def normalize_text(utt: str, language: str) -> str:
|
||||
return re.sub(r"[^A-ZÀÂÆÇÉÈÊËÎÏÔŒÙÛÜ' ]", "", utt).upper()
|
||||
elif language == "pl":
|
||||
return re.sub(r"[^a-ząćęłńóśźżA-ZĄĆĘŁŃÓŚŹŻ' ]", "", utt).upper()
|
||||
elif language == "yue":
|
||||
return (
|
||||
utt.replace(" ", "")
|
||||
.replace(",", "")
|
||||
.replace("。", " ")
|
||||
.replace("?", "")
|
||||
.replace("!", "")
|
||||
.replace("?", "")
|
||||
elif language in ["yue", "zh-HK"]:
|
||||
# Mozilla Common Voice uses both "yue" and "zh-HK" for Cantonese
|
||||
# Not sure why they decided to do this...
|
||||
# None en/zh-yue tokens are manually removed here
|
||||
|
||||
# fmt: off
|
||||
tokens_to_remove = [",", "。", "?", "!", "?", "!", "‘", "、", ",", "\.", ":", ";", "「", "」", "“", "”", "~", "—", "ㄧ", "《", "》", "…", "⋯", "·", "﹒", ".", ":", "︰", "﹖", "(", ")", "-", "~", ";", "", "⠀", "﹔", "/", "A", "B", "–", "‧"]
|
||||
|
||||
# fmt: on
|
||||
utt = utt.upper().replace("\\", "")
|
||||
return re.sub(
|
||||
pattern="|".join([f"[{token}]" for token in tokens_to_remove]),
|
||||
repl="",
|
||||
string=utt,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
@ -130,6 +136,28 @@ def preprocess_commonvoice(
|
||||
supervisions=m["supervisions"],
|
||||
).resample(16000)
|
||||
|
||||
if partition == "validated":
|
||||
logging.warning(
|
||||
"""
|
||||
The 'validated' partition contains the data of both 'train', 'dev'
|
||||
and 'test' partitions. We filter out the 'dev' and 'test' partition
|
||||
here.
|
||||
"""
|
||||
)
|
||||
dev_ids = src_dir / f"cv-{language}_dev_ids"
|
||||
test_ids = src_dir / f"cv-{language}_test_ids"
|
||||
assert (
|
||||
dev_ids.is_file()
|
||||
), f"{dev_ids} does not exist, please check stage 1 of the prepare.sh"
|
||||
assert (
|
||||
test_ids.is_file()
|
||||
), f"{test_ids} does not exist, please check stage 1 of the prepare.sh"
|
||||
dev_ids = dev_ids.read_text().strip().split("\n")
|
||||
test_ids = test_ids.read_text().strip().split("\n")
|
||||
cut_set = cut_set.filter(
|
||||
lambda x: x.supervisions[0].id not in dev_ids + test_ids
|
||||
)
|
||||
|
||||
# Run data augmentation that needs to be done in the
|
||||
# time domain.
|
||||
logging.info(f"Saving to {raw_cuts_path}")
|
||||
|
147
egs/commonvoice/ASR/local/word_segment_yue.py
Executable file
147
egs/commonvoice/ASR/local/word_segment_yue.py
Executable file
@ -0,0 +1,147 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2024 Xiaomi Corp. (authors: Zengrui Jin)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script takes a text file "data/lang_char/text" as input, the file consist of
|
||||
lines each containing a transcript, applies text norm and generates the following
|
||||
files in the directory "data/lang_char":
|
||||
- transcript_words.txt
|
||||
- words.txt
|
||||
- words_no_ids.txt
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import pycantonese
|
||||
from preprocess_commonvoice import normalize_text
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
from icefall.utils import is_cjk, tokenize_by_CJK_char
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Prepare char lexicon",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input-file",
|
||||
"-i",
|
||||
default="data/yue/lang_char/text",
|
||||
type=str,
|
||||
help="The input text file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
"-o",
|
||||
default="data/yue/lang_char/",
|
||||
type=str,
|
||||
help="The output directory",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lang",
|
||||
"-l",
|
||||
default="yue",
|
||||
type=str,
|
||||
help="The language",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def get_word_segments(lines: List[str]) -> List[str]:
|
||||
# the current pycantonese segmenter does not handle the case when the input
|
||||
# is code switching, so we need to handle it separately
|
||||
|
||||
new_lines = []
|
||||
|
||||
for line in tqdm(lines, desc="Segmenting lines"):
|
||||
try:
|
||||
if is_cs(line): # code switching
|
||||
segments = []
|
||||
curr_str = ""
|
||||
for segment in tokenize_by_CJK_char(line).split(" "):
|
||||
if segment.strip() == "":
|
||||
continue
|
||||
try:
|
||||
if not is_cjk(segment[0]): # en segment
|
||||
if curr_str:
|
||||
segments.extend(pycantonese.segment(curr_str))
|
||||
curr_str = ""
|
||||
segments.append(segment)
|
||||
else: # zh segment
|
||||
curr_str += segment
|
||||
# segments.extend(pycantonese.segment(segment))
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to process segment: {segment}")
|
||||
raise
|
||||
if curr_str: # process the last segment
|
||||
segments.extend(pycantonese.segment(curr_str))
|
||||
new_lines.append(" ".join(segments) + "\n")
|
||||
else: # not code switching
|
||||
new_lines.append(" ".join(pycantonese.segment(line)) + "\n")
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to process line: {line}")
|
||||
raise e
|
||||
return new_lines
|
||||
|
||||
|
||||
def get_words(lines: List[str]) -> List[str]:
|
||||
words = set()
|
||||
for line in tqdm(lines, desc="Getting words"):
|
||||
words.update(line.strip().split(" "))
|
||||
return list(words)
|
||||
|
||||
|
||||
def is_cs(line: str) -> bool:
|
||||
english_markers = r"[a-zA-Z]+"
|
||||
return bool(re.search(english_markers, line))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
input_file = Path(args.input_file)
|
||||
output_dir = Path(args.output_dir)
|
||||
lang = args.lang
|
||||
|
||||
assert input_file.is_file(), f"{input_file} does not exist"
|
||||
assert output_dir.is_dir(), f"{output_dir} does not exist"
|
||||
|
||||
lines = input_file.read_text(encoding="utf-8").strip().split("\n")
|
||||
norm_lines = [normalize_text(line, lang) for line in lines]
|
||||
|
||||
text_words_segments = get_word_segments(norm_lines)
|
||||
with open(output_dir / "transcript_words.txt", "w", encoding="utf-8") as f:
|
||||
f.writelines(text_words_segments)
|
||||
|
||||
words = get_words(text_words_segments)[1:] # remove "\n" from words
|
||||
with open(output_dir / "words_no_ids.txt", "w", encoding="utf-8") as f:
|
||||
f.writelines([word + "\n" for word in sorted(words)])
|
||||
|
||||
words = (
|
||||
["<eps>", "!SIL", "<SPOKEN_NOISE>", "<UNK>"]
|
||||
+ sorted(words)
|
||||
+ ["#0", "<s>", "<\s>"]
|
||||
)
|
||||
|
||||
with open(output_dir / "words.txt", "w", encoding="utf-8") as f:
|
||||
f.writelines([f"{word} {i}\n" for i, word in enumerate(words)])
|
@ -10,6 +10,12 @@ stop_stage=100
|
||||
# This is to avoid OOM during feature extraction.
|
||||
num_splits=1000
|
||||
|
||||
# In case you want to use all validated data
|
||||
use_validated=false
|
||||
|
||||
# In case you are willing to take the risk and use invalidated data
|
||||
use_invalidated=false
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
# by this script automatically.
|
||||
@ -38,6 +44,7 @@ num_splits=1000
|
||||
dl_dir=$PWD/download
|
||||
release=cv-corpus-12.0-2022-12-07
|
||||
lang=fr
|
||||
perturb_speed=false
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
@ -100,8 +107,40 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
mkdir -p data/${lang}/manifests
|
||||
if [ ! -e data/${lang}/manifests/.cv-${lang}.done ]; then
|
||||
lhotse prepare commonvoice --language $lang -j $nj $dl_dir/$release data/${lang}/manifests
|
||||
|
||||
if [ $use_validated = true ] && [ ! -f data/${lang}/manifests/.cv-${lang}.validated.done ]; then
|
||||
log "Also prepare validated data"
|
||||
lhotse prepare commonvoice \
|
||||
--split validated \
|
||||
--language $lang \
|
||||
-j $nj $dl_dir/$release data/${lang}/manifests
|
||||
touch data/${lang}/manifests/.cv-${lang}.validated.done
|
||||
fi
|
||||
|
||||
if [ $use_invalidated = true ] && [ ! -f data/${lang}/manifests/.cv-${lang}.invalidated.done ]; then
|
||||
log "Also prepare invalidated data"
|
||||
lhotse prepare commonvoice \
|
||||
--split invalidated \
|
||||
--language $lang \
|
||||
-j $nj $dl_dir/$release data/${lang}/manifests
|
||||
touch data/${lang}/manifests/.cv-${lang}.invalidated.done
|
||||
fi
|
||||
|
||||
touch data/${lang}/manifests/.cv-${lang}.done
|
||||
fi
|
||||
|
||||
# Note: in Linux, you can install jq with the following command:
|
||||
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
|
||||
# 2. chmod +x ./jq
|
||||
# 3. cp jq /usr/bin
|
||||
if [ $use_validated = true ]; then
|
||||
log "Getting cut ids from dev/test sets for later use"
|
||||
gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_test.jsonl.gz \
|
||||
| jq '.id' | sed 's/"//g' > data/${lang}/manifests/cv-${lang}_test_ids
|
||||
|
||||
gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_dev.jsonl.gz \
|
||||
| jq '.id' | sed 's/"//g' > data/${lang}/manifests/cv-${lang}_dev_ids
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
@ -121,6 +160,18 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
./local/preprocess_commonvoice.py --language $lang
|
||||
touch data/${lang}/fbank/.preprocess_complete
|
||||
fi
|
||||
|
||||
if [ $use_validated = true ] && [ ! -f data/${lang}/fbank/.validated.preprocess_complete ]; then
|
||||
log "Also preprocess validated data"
|
||||
./local/preprocess_commonvoice.py --language $lang --dataset validated
|
||||
touch data/${lang}/fbank/.validated.preprocess_complete
|
||||
fi
|
||||
|
||||
if [ $use_invalidated = true ] && [ ! -f data/${lang}/fbank/.invalidated.preprocess_complete ]; then
|
||||
log "Also preprocess invalidated data"
|
||||
./local/preprocess_commonvoice.py --language $lang --dataset invalidated
|
||||
touch data/${lang}/fbank/.invalidated.preprocess_complete
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
@ -139,6 +190,20 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
lhotse split $num_splits ./data/${lang}/fbank/cv-${lang}_cuts_train_raw.jsonl.gz $split_dir
|
||||
touch $split_dir/.cv-${lang}_train_split.done
|
||||
fi
|
||||
|
||||
split_dir=data/${lang}/fbank/cv-${lang}_validated_split_${num_splits}
|
||||
if [ $use_validated = true ] && [ ! -f $split_dir/.cv-${lang}_validated.done ]; then
|
||||
log "Also split validated data"
|
||||
lhotse split $num_splits ./data/${lang}/fbank/cv-${lang}_cuts_validated_raw.jsonl.gz $split_dir
|
||||
touch $split_dir/.cv-${lang}_validated.done
|
||||
fi
|
||||
|
||||
split_dir=data/${lang}/fbank/cv-${lang}_invalidated_split_${num_splits}
|
||||
if [ $use_invalidated = true ] && [ ! -f $split_dir/.cv-${lang}_invalidated.done ]; then
|
||||
log "Also split invalidated data"
|
||||
lhotse split $num_splits ./data/${lang}/fbank/cv-${lang}_cuts_invalidated_raw.jsonl.gz $split_dir
|
||||
touch $split_dir/.cv-${lang}_invalidated.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
@ -149,9 +214,36 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
--batch-duration 200 \
|
||||
--start 0 \
|
||||
--num-splits $num_splits \
|
||||
--language $lang
|
||||
--language $lang \
|
||||
--perturb-speed $perturb_speed
|
||||
touch data/${lang}/fbank/.cv-${lang}_train.done
|
||||
fi
|
||||
|
||||
if [ $use_validated = true ] && [ ! -f data/${lang}/fbank/.cv-${lang}_validated.done ]; then
|
||||
log "Also compute features for validated data"
|
||||
./local/compute_fbank_commonvoice_splits.py \
|
||||
--subset validated \
|
||||
--num-workers $nj \
|
||||
--batch-duration 200 \
|
||||
--start 0 \
|
||||
--num-splits $num_splits \
|
||||
--language $lang \
|
||||
--perturb-speed $perturb_speed
|
||||
touch data/${lang}/fbank/.cv-${lang}_validated.done
|
||||
fi
|
||||
|
||||
if [ $use_invalidated = true ] && [ ! -f data/${lang}/fbank/.cv-${lang}_invalidated.done ]; then
|
||||
log "Also compute features for invalidated data"
|
||||
./local/compute_fbank_commonvoice_splits.py \
|
||||
--subset invalidated \
|
||||
--num-workers $nj \
|
||||
--batch-duration 200 \
|
||||
--start 0 \
|
||||
--num-splits $num_splits \
|
||||
--language $lang \
|
||||
--perturb-speed $perturb_speed
|
||||
touch data/${lang}/fbank/.cv-${lang}_invalidated.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
@ -160,6 +252,20 @@ if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
pieces=$(find data/${lang}/fbank/cv-${lang}_train_split_${num_splits} -name "cv-${lang}_cuts_train.*.jsonl.gz")
|
||||
lhotse combine $pieces data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz
|
||||
fi
|
||||
|
||||
if [ $use_validated = true ] && [ -f data/${lang}/fbank/.cv-${lang}_validated.done ]; then
|
||||
log "Also combine features for validated data"
|
||||
pieces=$(find data/${lang}/fbank/cv-${lang}_validated_split_${num_splits} -name "cv-${lang}_cuts_validated.*.jsonl.gz")
|
||||
lhotse combine $pieces data/${lang}/fbank/cv-${lang}_cuts_validated.jsonl.gz
|
||||
touch data/${lang}/fbank/.cv-${lang}_validated.done
|
||||
fi
|
||||
|
||||
if [ $use_invalidated = true ] && [ -f data/${lang}/fbank/.cv-${lang}_invalidated.done ]; then
|
||||
log "Also combine features for invalidated data"
|
||||
pieces=$(find data/${lang}/fbank/cv-${lang}_invalidated_split_${num_splits} -name "cv-${lang}_cuts_invalidated.*.jsonl.gz")
|
||||
lhotse combine $pieces data/${lang}/fbank/cv-${lang}_cuts_invalidated.jsonl.gz
|
||||
touch data/${lang}/fbank/.cv-${lang}_invalidated.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
@ -172,83 +278,134 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
fi
|
||||
|
||||
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||
log "Stage 9: Prepare BPE based lang"
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/${lang}/lang_bpe_${vocab_size}
|
||||
if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then
|
||||
log "Stage 9: Prepare Char based lang"
|
||||
lang_dir=data/${lang}/lang_char/
|
||||
mkdir -p $lang_dir
|
||||
|
||||
if [ ! -f $lang_dir/transcript_words.txt ]; then
|
||||
log "Generate data for BPE training"
|
||||
file=$(
|
||||
find "data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz"
|
||||
)
|
||||
gunzip -c ${file} | awk -F '"' '{print $30}' > $lang_dir/transcript_words.txt
|
||||
log "Generate data for lang preparation"
|
||||
|
||||
# Ensure space only appears once
|
||||
sed -i 's/\t/ /g' $lang_dir/transcript_words.txt
|
||||
sed -i 's/[ ][ ]*/ /g' $lang_dir/transcript_words.txt
|
||||
fi
|
||||
# Prepare text.
|
||||
# Note: in Linux, you can install jq with the following command:
|
||||
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
|
||||
# 2. chmod +x ./jq
|
||||
# 3. cp jq /usr/bin
|
||||
if [ $use_validated = true ]; then
|
||||
gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_validated.jsonl.gz \
|
||||
| jq '.text' | sed 's/"//g' >> $lang_dir/text
|
||||
else
|
||||
gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_train.jsonl.gz \
|
||||
| jq '.text' | sed 's/"//g' > $lang_dir/text
|
||||
fi
|
||||
|
||||
if [ $use_invalidated = true ]; then
|
||||
gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_invalidated.jsonl.gz \
|
||||
| jq '.text' | sed 's/"//g' >> $lang_dir/text
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/words.txt ]; then
|
||||
cat $lang_dir/transcript_words.txt | sed 's/ /\n/g' \
|
||||
| sort -u | sed '/^$/d' > $lang_dir/words.txt
|
||||
(echo '!SIL'; echo '<SPOKEN_NOISE>'; echo '<UNK>'; ) |
|
||||
cat - $lang_dir/words.txt | sort | uniq | awk '
|
||||
BEGIN {
|
||||
print "<eps> 0";
|
||||
}
|
||||
{
|
||||
if ($1 == "<s>") {
|
||||
print "<s> is in the vocabulary!" | "cat 1>&2"
|
||||
exit 1;
|
||||
if [ $lang == "yue" ] || [ $lang == "zh-HK" ]; then
|
||||
# Get words.txt and words_no_ids.txt
|
||||
./local/word_segment_yue.py \
|
||||
--input-file $lang_dir/text \
|
||||
--output-dir $lang_dir \
|
||||
--lang $lang
|
||||
|
||||
mv $lang_dir/text $lang_dir/_text
|
||||
cp $lang_dir/transcript_words.txt $lang_dir/text
|
||||
|
||||
if [ ! -f $lang_dir/tokens.txt ]; then
|
||||
./local/prepare_char.py --lang-dir $lang_dir
|
||||
fi
|
||||
else
|
||||
log "word_segment_${lang}.py not implemented yet"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
else
|
||||
log "Stage 9: Prepare BPE based lang"
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/${lang}/lang_bpe_${vocab_size}
|
||||
mkdir -p $lang_dir
|
||||
|
||||
if [ ! -f $lang_dir/transcript_words.txt ]; then
|
||||
log "Generate data for BPE training"
|
||||
file=$(
|
||||
find "data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz"
|
||||
)
|
||||
# Prepare text.
|
||||
# Note: in Linux, you can install jq with the following command:
|
||||
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
|
||||
# 2. chmod +x ./jq
|
||||
# 3. cp jq /usr/bin
|
||||
gunzip -c ${file} \
|
||||
| jq '.text' | sed 's/"//g' > $lang_dir/transcript_words.txt
|
||||
|
||||
# Ensure space only appears once
|
||||
sed -i 's/\t/ /g' $lang_dir/transcript_words.txt
|
||||
sed -i 's/[ ][ ]*/ /g' $lang_dir/transcript_words.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/words.txt ]; then
|
||||
cat $lang_dir/transcript_words.txt | sed 's/ /\n/g' \
|
||||
| sort -u | sed '/^$/d' > $lang_dir/words.txt
|
||||
(echo '!SIL'; echo '<SPOKEN_NOISE>'; echo '<UNK>'; ) |
|
||||
cat - $lang_dir/words.txt | sort | uniq | awk '
|
||||
BEGIN {
|
||||
print "<eps> 0";
|
||||
}
|
||||
if ($1 == "</s>") {
|
||||
print "</s> is in the vocabulary!" | "cat 1>&2"
|
||||
exit 1;
|
||||
{
|
||||
if ($1 == "<s>") {
|
||||
print "<s> is in the vocabulary!" | "cat 1>&2"
|
||||
exit 1;
|
||||
}
|
||||
if ($1 == "</s>") {
|
||||
print "</s> is in the vocabulary!" | "cat 1>&2"
|
||||
exit 1;
|
||||
}
|
||||
printf("%s %d\n", $1, NR);
|
||||
}
|
||||
printf("%s %d\n", $1, NR);
|
||||
}
|
||||
END {
|
||||
printf("#0 %d\n", NR+1);
|
||||
printf("<s> %d\n", NR+2);
|
||||
printf("</s> %d\n", NR+3);
|
||||
}' > $lang_dir/words || exit 1;
|
||||
mv $lang_dir/words $lang_dir/words.txt
|
||||
fi
|
||||
END {
|
||||
printf("#0 %d\n", NR+1);
|
||||
printf("<s> %d\n", NR+2);
|
||||
printf("</s> %d\n", NR+3);
|
||||
}' > $lang_dir/words || exit 1;
|
||||
mv $lang_dir/words $lang_dir/words.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/bpe.model ]; then
|
||||
./local/train_bpe_model.py \
|
||||
--lang-dir $lang_dir \
|
||||
--vocab-size $vocab_size \
|
||||
--transcript $lang_dir/transcript_words.txt
|
||||
fi
|
||||
if [ ! -f $lang_dir/bpe.model ]; then
|
||||
./local/train_bpe_model.py \
|
||||
--lang-dir $lang_dir \
|
||||
--vocab-size $vocab_size \
|
||||
--transcript $lang_dir/transcript_words.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||
./local/prepare_lang_bpe.py --lang-dir $lang_dir
|
||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||
./local/prepare_lang_bpe.py --lang-dir $lang_dir
|
||||
|
||||
log "Validating $lang_dir/lexicon.txt"
|
||||
./local/validate_bpe_lexicon.py \
|
||||
--lexicon $lang_dir/lexicon.txt \
|
||||
--bpe-model $lang_dir/bpe.model
|
||||
fi
|
||||
log "Validating $lang_dir/lexicon.txt"
|
||||
./local/validate_bpe_lexicon.py \
|
||||
--lexicon $lang_dir/lexicon.txt \
|
||||
--bpe-model $lang_dir/bpe.model
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/L.fst ]; then
|
||||
log "Converting L.pt to L.fst"
|
||||
./shared/convert-k2-to-openfst.py \
|
||||
--olabels aux_labels \
|
||||
$lang_dir/L.pt \
|
||||
$lang_dir/L.fst
|
||||
fi
|
||||
if [ ! -f $lang_dir/L.fst ]; then
|
||||
log "Converting L.pt to L.fst"
|
||||
./shared/convert-k2-to-openfst.py \
|
||||
--olabels aux_labels \
|
||||
$lang_dir/L.pt \
|
||||
$lang_dir/L.fst
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/L_disambig.fst ]; then
|
||||
log "Converting L_disambig.pt to L_disambig.fst"
|
||||
./shared/convert-k2-to-openfst.py \
|
||||
--olabels aux_labels \
|
||||
$lang_dir/L_disambig.pt \
|
||||
$lang_dir/L_disambig.fst
|
||||
fi
|
||||
done
|
||||
if [ ! -f $lang_dir/L_disambig.fst ]; then
|
||||
log "Converting L_disambig.pt to L_disambig.fst"
|
||||
./shared/convert-k2-to-openfst.py \
|
||||
--olabels aux_labels \
|
||||
$lang_dir/L_disambig.pt \
|
||||
$lang_dir/L_disambig.fst
|
||||
fi
|
||||
done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
||||
@ -256,49 +413,96 @@ if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
||||
# We assume you have install kaldilm, if not, please install
|
||||
# it using: pip install kaldilm
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/${lang}/lang_bpe_${vocab_size}
|
||||
if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then
|
||||
lang_dir=data/${lang}/lang_char
|
||||
mkdir -p $lang_dir/lm
|
||||
#3-gram used in building HLG, 4-gram used for LM rescoring
|
||||
for ngram in 3 4; do
|
||||
if [ ! -f $lang_dir/lm/${ngram}gram.arpa ]; then
|
||||
./shared/make_kn_lm.py \
|
||||
-ngram-order ${ngram} \
|
||||
-text $lang_dir/transcript_words.txt \
|
||||
-lm $lang_dir/lm/${ngram}gram.arpa
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/lm/${ngram}gram.fst.txt ]; then
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table="$lang_dir/words.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=${ngram} \
|
||||
$lang_dir/lm/${ngram}gram.arpa > $lang_dir/lm/G_${ngram}_gram.fst.txt
|
||||
fi
|
||||
for ngram in 3 ; do
|
||||
if [ ! -f $lang_dir/lm/${ngram}-gram.unpruned.arpa ]; then
|
||||
./shared/make_kn_lm.py \
|
||||
-ngram-order ${ngram} \
|
||||
-text $lang_dir/transcript_words.txt \
|
||||
-lm $lang_dir/lm/${ngram}gram.unpruned.arpa
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/lm/G_${ngram}_gram_char.fst.txt ]; then
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table="$lang_dir/words.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=${ngram} \
|
||||
$lang_dir/lm/${ngram}gram.unpruned.arpa \
|
||||
> $lang_dir/lm/G_${ngram}_gram_char.fst.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/lm/HLG.fst ]; then
|
||||
./local/prepare_lang_fst.py \
|
||||
--lang-dir $lang_dir \
|
||||
--ngram-G $lang_dir/lm/G_${ngram}_gram_char.fst.txt
|
||||
fi
|
||||
done
|
||||
else
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/${lang}/lang_bpe_${vocab_size}
|
||||
mkdir -p $lang_dir/lm
|
||||
#3-gram used in building HLG, 4-gram used for LM rescoring
|
||||
for ngram in 3 4; do
|
||||
if [ ! -f $lang_dir/lm/${ngram}gram.arpa ]; then
|
||||
./shared/make_kn_lm.py \
|
||||
-ngram-order ${ngram} \
|
||||
-text $lang_dir/transcript_words.txt \
|
||||
-lm $lang_dir/lm/${ngram}gram.arpa
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/lm/${ngram}gram.fst.txt ]; then
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table="$lang_dir/words.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=${ngram} \
|
||||
$lang_dir/lm/${ngram}gram.arpa > $lang_dir/lm/G_${ngram}_gram.fst.txt
|
||||
fi
|
||||
done
|
||||
done
|
||||
done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
|
||||
log "Stage 11: Compile HLG"
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/${lang}/lang_bpe_${vocab_size}
|
||||
./local/compile_hlg.py --lang-dir $lang_dir
|
||||
if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then
|
||||
lang_dir=data/${lang}/lang_char
|
||||
for ngram in 3 ; do
|
||||
if [ ! -f $lang_dir/lm/HLG_${ngram}.fst ]; then
|
||||
./local/compile_hlg.py --lang-dir $lang_dir --lm G_${ngram}_gram_char
|
||||
fi
|
||||
done
|
||||
else
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/${lang}/lang_bpe_${vocab_size}
|
||||
./local/compile_hlg.py --lang-dir $lang_dir
|
||||
|
||||
# Note If ./local/compile_hlg.py throws OOM,
|
||||
# please switch to the following command
|
||||
#
|
||||
# ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir
|
||||
done
|
||||
# Note If ./local/compile_hlg.py throws OOM,
|
||||
# please switch to the following command
|
||||
#
|
||||
# ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir
|
||||
done
|
||||
fi
|
||||
fi
|
||||
|
||||
# Compile LG for RNN-T fast_beam_search decoding
|
||||
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
||||
log "Stage 12: Compile LG"
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/${lang}/lang_bpe_${vocab_size}
|
||||
./local/compile_lg.py --lang-dir $lang_dir
|
||||
done
|
||||
if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then
|
||||
lang_dir=data/${lang}/lang_char
|
||||
for ngram in 3 ; do
|
||||
if [ ! -f $lang_dir/lm/LG_${ngram}.fst ]; then
|
||||
./local/compile_lg.py --lang-dir $lang_dir --lm G_${ngram}_gram_char
|
||||
fi
|
||||
done
|
||||
else
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/${lang}/lang_bpe_${vocab_size}
|
||||
./local/compile_lg.py --lang-dir $lang_dir
|
||||
done
|
||||
fi
|
||||
fi
|
||||
|
@ -409,6 +409,22 @@ class CommonVoiceAsrDataModule:
|
||||
self.args.cv_manifest_dir / f"cv-{self.args.language}_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def validated_cuts(self) -> CutSet:
|
||||
logging.info("About to get validated cuts (with dev/test removed)")
|
||||
return load_manifest_lazy(
|
||||
self.args.cv_manifest_dir
|
||||
/ f"cv-{self.args.language}_cuts_validated.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def invalidated_cuts(self) -> CutSet:
|
||||
logging.info("About to get invalidated cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.cv_manifest_dir
|
||||
/ f"cv-{self.args.language}_cuts_invalidated.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
|
@ -1,8 +1,9 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Copyright 2021-2024 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang,
|
||||
# Mingshuang Luo,)
|
||||
# Zengwei Yao)
|
||||
# Mingshuang Luo,
|
||||
# Zengwei Yao,
|
||||
# Zengrui Jin,)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -249,7 +250,29 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--base-lr", type=float, default=0.05, help="The base learning rate."
|
||||
"--use-validated-set",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""Use the validated set for training.
|
||||
This is useful when you want to use more data for training,
|
||||
but not recommended for research purposes.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-invalidated-set",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""Use the invalidated set for training.
|
||||
In case you want to take the risk and utilize more data for training.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--base-lr",
|
||||
type=float,
|
||||
default=0.05,
|
||||
help="The base learning rate.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -1027,7 +1050,13 @@ def run(rank, world_size, args):
|
||||
|
||||
commonvoice = CommonVoiceAsrDataModule(args)
|
||||
|
||||
train_cuts = commonvoice.train_cuts()
|
||||
if args.use_validated_set:
|
||||
train_cuts = commonvoice.validated_cuts()
|
||||
else:
|
||||
train_cuts = commonvoice.train_cuts()
|
||||
|
||||
if args.use_invalidated_set:
|
||||
train_cuts += commonvoice.invalidated_cuts()
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
|
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless7/asr_datamodule.py
|
@ -1,426 +0,0 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import inspect
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SimpleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||
AudioSamples,
|
||||
OnTheFlyFeatures,
|
||||
)
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class _SeedWorkers:
|
||||
def __init__(self, seed: int):
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, worker_id: int):
|
||||
fix_random_seed(self.seed + worker_id)
|
||||
|
||||
|
||||
class CommonVoiceAsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--language",
|
||||
type=str,
|
||||
default="fr",
|
||||
help="""Language of Common Voice""",
|
||||
)
|
||||
group.add_argument(
|
||||
"--cv-manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/fr/fbank"),
|
||||
help="Path to directory with CommonVoice train/dev/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to drop last batch. Used by sampler.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['supervisions']['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use SpecAugment for training dataset.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--enable-musan",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, select noise from MUSAN and mix it"
|
||||
"with training dataset. ",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--input-strategy",
|
||||
type=str,
|
||||
default="PrecomputedFeatures",
|
||||
help="AudioSamples or PrecomputedFeatures",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
transforms = []
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = []
|
||||
if self.args.enable_spec_aug:
|
||||
logging.info("Enable SpecAugment")
|
||||
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||
# Set the value of num_frame_masks according to Lhotse's version.
|
||||
# In different Lhotse's versions, the default of num_frame_masks is
|
||||
# different.
|
||||
num_frame_masks = 10
|
||||
num_frame_masks_parameter = inspect.signature(
|
||||
SpecAugment.__init__
|
||||
).parameters["num_frame_masks"]
|
||||
if num_frame_masks_parameter.default == 1:
|
||||
num_frame_masks = 2
|
||||
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||
input_transforms.append(
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=num_frame_masks,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable SpecAugment")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
train = K2SpeechRecognitionDataset(
|
||||
input_strategy=eval(self.args.input_strategy)(),
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we
|
||||
# remove it from data prep stage.
|
||||
# Add on-the-fly speed perturbation; since originally it would
|
||||
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||
# 3x more epochs.
|
||||
# Speed perturbation probably should come first before
|
||||
# concatenation, but in principle the transforms order doesn't have
|
||||
# to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||
# Drop feats to be on the safe side.
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
input_transforms=input_transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
buffer_size=self.args.num_buckets * 2000,
|
||||
shuffle_buffer_size=self.args.num_buckets * 5000,
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SimpleCutSampler.")
|
||||
train_sampler = SimpleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
# 'seed' is derived from the current random state, which will have
|
||||
# previously been set in the main process.
|
||||
seed = torch.randint(0, 100000, ()).item()
|
||||
worker_init_fn = _SeedWorkers(seed)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
worker_init_fn=worker_init_fn,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=(
|
||||
OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else eval(self.args.input_strategy)()
|
||||
),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.cv_manifest_dir / f"cv-{self.args.language}_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def dev_cuts(self) -> CutSet:
|
||||
logging.info("About to get dev cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.cv_manifest_dir / f"cv-{self.args.language}_cuts_dev.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> CutSet:
|
||||
logging.info("About to get test cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.cv_manifest_dir / f"cv-{self.args.language}_cuts_test.jsonl.gz"
|
||||
)
|
@ -1,7 +1,8 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
# Copyright 2021-2024 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao,
|
||||
# Zengrui Jin,)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -112,6 +113,7 @@ import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import CommonVoiceAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_nbest,
|
||||
@ -122,7 +124,6 @@ from beam_search import (
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from commonvoice_fr import CommonVoiceAsrDataModule
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
|
@ -1,8 +1,9 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Copyright 2021-2024 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang,
|
||||
# Mingshuang Luo,)
|
||||
# Zengwei Yao)
|
||||
# Zengwei Yao,
|
||||
# Zengrui Jin,)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -55,7 +56,7 @@ import sentencepiece as spm
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from commonvoice_fr import CommonVoiceAsrDataModule
|
||||
from asr_datamodule import CommonVoiceAsrDataModule
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from lhotse.cut import Cut
|
||||
|
@ -1,8 +1,9 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Copyright 2021-2024 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang,
|
||||
# Mingshuang Luo,)
|
||||
# Zengwei Yao)
|
||||
# Mingshuang Luo,
|
||||
# Zengwei Yao,
|
||||
# Zengrui Jin,)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -58,7 +59,7 @@ import sentencepiece as spm
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from commonvoice_fr import CommonVoiceAsrDataModule
|
||||
from asr_datamodule import CommonVoiceAsrDataModule
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from lhotse.cut import Cut
|
||||
|
@ -1,5 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corporation (Authors: Wei Kang, Fangjun Kuang)
|
||||
# Copyright 2022-2024 Xiaomi Corporation (Authors: Wei Kang,
|
||||
# Fangjun Kuang,
|
||||
# Zengrui Jin,)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -37,7 +39,7 @@ import numpy as np
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from commonvoice_fr import CommonVoiceAsrDataModule
|
||||
from asr_datamodule import CommonVoiceAsrDataModule
|
||||
from decode_stream import DecodeStream
|
||||
from kaldifeat import Fbank, FbankOptions
|
||||
from lhotse import CutSet
|
||||
|
@ -1,8 +1,9 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Copyright 2021-2024 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||
# Wei Kang,
|
||||
# Mingshuang Luo,)
|
||||
# Zengwei Yao)
|
||||
# Mingshuang Luo,
|
||||
# Zengwei Yao,
|
||||
# Zengrui Jin,)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -55,7 +56,7 @@ import sentencepiece as spm
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
from commonvoice_fr import CommonVoiceAsrDataModule
|
||||
from asr_datamodule import CommonVoiceAsrDataModule
|
||||
from decoder import Decoder
|
||||
from joiner import Joiner
|
||||
from lhotse.cut import Cut
|
||||
@ -265,7 +266,29 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--base-lr", type=float, default=0.05, help="The base learning rate."
|
||||
"--use-validated-set",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""Use the validated set for training.
|
||||
This is useful when you want to use more data for training,
|
||||
but not recommended for research purposes.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-invalidated-set",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""Use the invalidated set for training.
|
||||
In case you want to take the risk and utilize more data for training.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--base-lr",
|
||||
type=float,
|
||||
default=0.05,
|
||||
help="The base learning rate.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -1044,7 +1067,13 @@ def run(rank, world_size, args):
|
||||
|
||||
commonvoice = CommonVoiceAsrDataModule(args)
|
||||
|
||||
train_cuts = commonvoice.train_cuts()
|
||||
if not args.use_validated_set:
|
||||
train_cuts = commonvoice.train_cuts()
|
||||
else:
|
||||
train_cuts = commonvoice.validated_cuts()
|
||||
|
||||
if args.use_invalidated_set:
|
||||
train_cuts += commonvoice.invalidated_cuts()
|
||||
|
||||
def remove_short_and_long_utt(c: Cut):
|
||||
# Keep only utterances with duration between 1 second and 20 seconds
|
||||
|
1
egs/commonvoice/ASR/zipformer/asr_datamodule.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless7/asr_datamodule.py
|
1
egs/commonvoice/ASR/zipformer/beam_search.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/beam_search.py
|
1052
egs/commonvoice/ASR/zipformer/decode.py
Executable file
1052
egs/commonvoice/ASR/zipformer/decode.py
Executable file
File diff suppressed because it is too large
Load Diff
813
egs/commonvoice/ASR/zipformer/decode_char.py
Executable file
813
egs/commonvoice/ASR/zipformer/decode_char.py
Executable file
@ -0,0 +1,813 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2024 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao
|
||||
# Mingshuang Luo,
|
||||
# Zengrui Jin,)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./zipformer/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--lang-dir data/zh-HK/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) modified beam search
|
||||
./zipformer/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--lang-dir data/zh-HK/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) fast beam search (trivial_graph)
|
||||
./zipformer/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--lang-dir data/zh-HK/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
|
||||
(4) fast beam search (LG)
|
||||
./zipformer/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--lang-dir data/zh-HK/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_LG \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
|
||||
(5) fast beam search (nbest oracle WER)
|
||||
./zipformer/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--lang-dir data/zh-HK/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_oracle \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import CommonVoiceAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_nbest_oracle,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from lhotse.cut import Cut
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
make_pad_mask,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default="data/zh-HK/lang_char",
|
||||
help="The lang dir containing word table and LG graph",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
- fast_beam_search_LG
|
||||
- fast_beam_search_nbest_oracle
|
||||
If you use fast_beam_search_LG, you have to specify
|
||||
`--lang-dir`, which should contain `LG.pt`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=20.0,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search,
|
||||
fast_beam_search, fast_beam_search_LG,
|
||||
and fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ngram-lm-scale",
|
||||
type=float,
|
||||
default=0.01,
|
||||
help="""
|
||||
Used only when --decoding_method is fast_beam_search_LG.
|
||||
It specifies the scale for n-gram LM scores.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ilme-scale",
|
||||
type=float,
|
||||
default=0.2,
|
||||
help="""
|
||||
Used only when --decoding_method is fast_beam_search_LG.
|
||||
It specifies the scale for the internal language model estimation.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search, fast_beam_search_LG,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=64,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search, fast_beam_search_LG,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Number of paths for nbest decoding.
|
||||
Used only when the decoding method is fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""Scale applied to lattice scores when computing nbest paths.
|
||||
Used only when the decoding method is and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--blank-penalty",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="""
|
||||
The penalty applied on blank symbol during decoding.
|
||||
Note: It is a positive value that would be applied to logits like
|
||||
this `logits[:, 0] -= blank_penalty` (suppose logits.shape is
|
||||
[batch_size, vocab] and blank id is 0).
|
||||
""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
lexicon: Lexicon,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
if params.causal:
|
||||
# this seems to cause insertions at the end of the utterance if used with zipformer.
|
||||
pad_len = 30
|
||||
feature_lens += pad_len
|
||||
feature = torch.nn.functional.pad(
|
||||
feature,
|
||||
pad=(0, 0, 0, pad_len),
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
x, x_lens = model.encoder_embed(feature, feature_lens)
|
||||
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
|
||||
encoder_out, encoder_out_lens = model.encoder(x, x_lens, src_key_padding_mask)
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
elif params.decoding_method == "fast_beam_search_LG":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
blank_penalty=params.blank_penalty,
|
||||
ilme_scale=params.ilme_scale,
|
||||
)
|
||||
for hyp in hyp_tokens:
|
||||
sentence = "".join([lexicon.word_table[i] for i in hyp])
|
||||
hyps.append(list(sentence))
|
||||
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=graph_compiler.texts_to_ids(supervisions["text"]),
|
||||
nbest_scale=params.nbest_scale,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
blank_penalty=params.blank_penalty,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i + 1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp])
|
||||
|
||||
key = f"blank_penalty_{params.blank_penalty}"
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search_" + key: hyps}
|
||||
elif "fast_beam_search" in params.decoding_method:
|
||||
key += f"_beam_{params.beam}_"
|
||||
key += f"max_contexts_{params.max_contexts}_"
|
||||
key += f"max_states_{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
key += f"_num_paths_{params.num_paths}_"
|
||||
key += f"nbest_scale_{params.nbest_scale}"
|
||||
if "LG" in params.decoding_method:
|
||||
key += f"_ilme_scale_{params.ilme_scale}"
|
||||
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||
|
||||
return {key: hyps}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}_" + key: hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
lexicon: Lexicon,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 50
|
||||
else:
|
||||
log_interval = 20
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
texts = [list("".join(text.split())) for text in texts]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
lexicon=lexicon,
|
||||
graph_compiler=graph_compiler,
|
||||
decoding_graph=decoding_graph,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
this_batch.append((cut_id, ref_text, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
CommonVoiceAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"modified_beam_search",
|
||||
"fast_beam_search",
|
||||
"fast_beam_search_LG",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if params.causal:
|
||||
assert (
|
||||
"," not in params.chunk_size
|
||||
), "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
params.suffix += f"-chunk-{params.chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||
params.suffix += f"-num-paths-{params.num_paths}"
|
||||
if "LG" in params.decoding_method:
|
||||
params.suffix += f"_ilme_scale_{params.ilme_scale}"
|
||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
params.suffix += f"-blank-penalty-{params.blank_penalty}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
params.blank_id = lexicon.token_table["<blk>"]
|
||||
params.vocab_size = max(lexicon.tokens) + 1
|
||||
|
||||
graph_compiler = CharCtcTrainingGraphCompiler(
|
||||
lexicon=lexicon,
|
||||
device=device,
|
||||
)
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if "LG" in params.decoding_method:
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
lg_filename = params.lang_dir / "LG.pt"
|
||||
logging.info(f"Loading {lg_filename}")
|
||||
decoding_graph = k2.Fsa.from_dict(
|
||||
torch.load(lg_filename, map_location=device)
|
||||
)
|
||||
decoding_graph.scores *= params.ngram_lm_scale
|
||||
else:
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
commonvoice = CommonVoiceAsrDataModule(args)
|
||||
|
||||
def remove_short_utt(c: Cut):
|
||||
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||
if T <= 0:
|
||||
logging.warning(
|
||||
f"Exclude cut with ID {c.id} from decoding, num_frames : {c.num_frames}."
|
||||
)
|
||||
return T > 0
|
||||
|
||||
dev_cuts = commonvoice.dev_cuts()
|
||||
dev_cuts = dev_cuts.filter(remove_short_utt)
|
||||
dev_dl = commonvoice.valid_dataloaders(dev_cuts)
|
||||
|
||||
test_cuts = commonvoice.test_cuts()
|
||||
test_cuts = test_cuts.filter(remove_short_utt)
|
||||
test_dl = commonvoice.test_dataloaders(test_cuts)
|
||||
|
||||
test_sets = ["dev", "test"]
|
||||
test_dls = [dev_dl, test_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dls):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
lexicon=lexicon,
|
||||
graph_compiler=graph_compiler,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/commonvoice/ASR/zipformer/decode_stream.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/decode_stream.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/decode_stream.py
|
1
egs/commonvoice/ASR/zipformer/decoder.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/decoder.py
|
1
egs/commonvoice/ASR/zipformer/encoder_interface.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/encoder_interface.py
|
1
egs/commonvoice/ASR/zipformer/export-onnx-ctc.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/export-onnx-ctc.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export-onnx-ctc.py
|
1
egs/commonvoice/ASR/zipformer/export-onnx-streaming-ctc.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/export-onnx-streaming-ctc.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export-onnx-streaming-ctc.py
|
1
egs/commonvoice/ASR/zipformer/export-onnx-streaming.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/export-onnx-streaming.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export-onnx-streaming.py
|
1
egs/commonvoice/ASR/zipformer/export-onnx.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/export-onnx.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export-onnx.py
|
1
egs/commonvoice/ASR/zipformer/export.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/export.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export.py
|
1
egs/commonvoice/ASR/zipformer/joiner.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/joiner.py
|
1
egs/commonvoice/ASR/zipformer/model.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/model.py
|
1
egs/commonvoice/ASR/zipformer/onnx_check.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/onnx_check.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_check.py
|
1
egs/commonvoice/ASR/zipformer/onnx_pretrained.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/onnx_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_pretrained.py
|
1
egs/commonvoice/ASR/zipformer/optim.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/optim.py
|
1
egs/commonvoice/ASR/zipformer/scaling.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling.py
|
1
egs/commonvoice/ASR/zipformer/scaling_converter.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling_converter.py
|
1
egs/commonvoice/ASR/zipformer/streaming_beam_search.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/streaming_beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/streaming_beam_search.py
|
859
egs/commonvoice/ASR/zipformer/streaming_decode.py
Executable file
859
egs/commonvoice/ASR/zipformer/streaming_decode.py
Executable file
@ -0,0 +1,859 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang,
|
||||
# Fangjun Kuang,
|
||||
# Zengwei Yao,
|
||||
# Zengrui Jin,)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./zipformer/streaming_decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--causal 1 \
|
||||
--chunk-size 32 \
|
||||
--left-context-frames 256 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--decoding-method greedy_search \
|
||||
--num-decode-streams 2000
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from asr_datamodule import CommonVoiceAsrDataModule
|
||||
from decode_stream import DecodeStream
|
||||
from kaldifeat import Fbank, FbankOptions
|
||||
from lhotse import CutSet
|
||||
from streaming_beam_search import (
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
modified_beam_search,
|
||||
)
|
||||
from torch import Tensor, nn
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
make_pad_mask,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Supported decoding methods are:
|
||||
greedy_search
|
||||
modified_beam_search
|
||||
fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num_active_paths",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=32,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-decode-streams",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The number of streams that can be decoded parallel.",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_init_states(
|
||||
model: nn.Module,
|
||||
batch_size: int = 1,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> List[torch.Tensor]:
|
||||
"""
|
||||
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
||||
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
||||
states[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
"""
|
||||
states = model.encoder.get_init_states(batch_size, device)
|
||||
|
||||
embed_states = model.encoder_embed.get_init_states(batch_size, device)
|
||||
states.append(embed_states)
|
||||
|
||||
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||
states.append(processed_lens)
|
||||
|
||||
return states
|
||||
|
||||
|
||||
def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
|
||||
"""Stack list of zipformer states that correspond to separate utterances
|
||||
into a single emformer state, so that it can be used as an input for
|
||||
zipformer when those utterances are formed into a batch.
|
||||
|
||||
Args:
|
||||
state_list:
|
||||
Each element in state_list corresponding to the internal state
|
||||
of the zipformer model for a single utterance. For element-n,
|
||||
state_list[n] is a list of cached tensors of all encoder layers. For layer-i,
|
||||
state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1,
|
||||
cached_val2, cached_conv1, cached_conv2).
|
||||
state_list[n][-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
state_list[n][-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`unstack_states`.
|
||||
"""
|
||||
batch_size = len(state_list)
|
||||
assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0])
|
||||
tot_num_layers = (len(state_list[0]) - 2) // 6
|
||||
|
||||
batch_states = []
|
||||
for layer in range(tot_num_layers):
|
||||
layer_offset = layer * 6
|
||||
# cached_key: (left_context_len, batch_size, key_dim)
|
||||
cached_key = torch.cat(
|
||||
[state_list[i][layer_offset] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||
cached_nonlin_attn = torch.cat(
|
||||
[state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||
cached_val1 = torch.cat(
|
||||
[state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||
cached_val2 = torch.cat(
|
||||
[state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_conv1: (#batch, channels, left_pad)
|
||||
cached_conv1 = torch.cat(
|
||||
[state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0
|
||||
)
|
||||
# cached_conv2: (#batch, channels, left_pad)
|
||||
cached_conv2 = torch.cat(
|
||||
[state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0
|
||||
)
|
||||
batch_states += [
|
||||
cached_key,
|
||||
cached_nonlin_attn,
|
||||
cached_val1,
|
||||
cached_val2,
|
||||
cached_conv1,
|
||||
cached_conv2,
|
||||
]
|
||||
|
||||
cached_embed_left_pad = torch.cat(
|
||||
[state_list[i][-2] for i in range(batch_size)], dim=0
|
||||
)
|
||||
batch_states.append(cached_embed_left_pad)
|
||||
|
||||
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
|
||||
batch_states.append(processed_lens)
|
||||
|
||||
return batch_states
|
||||
|
||||
|
||||
def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
|
||||
"""Unstack the zipformer state corresponding to a batch of utterances
|
||||
into a list of states, where the i-th entry is the state from the i-th
|
||||
utterance in the batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`stack_states`.
|
||||
|
||||
Args:
|
||||
batch_states: A list of cached tensors of all encoder layers. For layer-i,
|
||||
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
|
||||
cached_conv1, cached_conv2).
|
||||
state_list[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
|
||||
Returns:
|
||||
state_list: A list of list. Each element in state_list corresponding to the internal state
|
||||
of the zipformer model for a single utterance.
|
||||
"""
|
||||
assert (len(batch_states) - 2) % 6 == 0, len(batch_states)
|
||||
tot_num_layers = (len(batch_states) - 2) // 6
|
||||
|
||||
processed_lens = batch_states[-1]
|
||||
batch_size = processed_lens.shape[0]
|
||||
|
||||
state_list = [[] for _ in range(batch_size)]
|
||||
|
||||
for layer in range(tot_num_layers):
|
||||
layer_offset = layer * 6
|
||||
# cached_key: (left_context_len, batch_size, key_dim)
|
||||
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
|
||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||
cached_val1_list = batch_states[layer_offset + 2].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||
cached_val2_list = batch_states[layer_offset + 3].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_conv1: (#batch, channels, left_pad)
|
||||
cached_conv1_list = batch_states[layer_offset + 4].chunk(
|
||||
chunks=batch_size, dim=0
|
||||
)
|
||||
# cached_conv2: (#batch, channels, left_pad)
|
||||
cached_conv2_list = batch_states[layer_offset + 5].chunk(
|
||||
chunks=batch_size, dim=0
|
||||
)
|
||||
for i in range(batch_size):
|
||||
state_list[i] += [
|
||||
cached_key_list[i],
|
||||
cached_nonlin_attn_list[i],
|
||||
cached_val1_list[i],
|
||||
cached_val2_list[i],
|
||||
cached_conv1_list[i],
|
||||
cached_conv2_list[i],
|
||||
]
|
||||
|
||||
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
|
||||
for i in range(batch_size):
|
||||
state_list[i].append(cached_embed_left_pad_list[i])
|
||||
|
||||
processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0)
|
||||
for i in range(batch_size):
|
||||
state_list[i].append(processed_lens_list[i])
|
||||
|
||||
return state_list
|
||||
|
||||
|
||||
def streaming_forward(
|
||||
features: Tensor,
|
||||
feature_lens: Tensor,
|
||||
model: nn.Module,
|
||||
states: List[Tensor],
|
||||
chunk_size: int,
|
||||
left_context_len: int,
|
||||
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
||||
"""
|
||||
Returns encoder outputs, output lengths, and updated states.
|
||||
"""
|
||||
cached_embed_left_pad = states[-2]
|
||||
(x, x_lens, new_cached_embed_left_pad) = model.encoder_embed.streaming_forward(
|
||||
x=features,
|
||||
x_lens=feature_lens,
|
||||
cached_left_pad=cached_embed_left_pad,
|
||||
)
|
||||
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
||||
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
|
||||
# processed_mask is used to mask out initial states
|
||||
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
||||
x.size(0), left_context_len
|
||||
)
|
||||
processed_lens = states[-1] # (batch,)
|
||||
# (batch, left_context_size)
|
||||
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
||||
# Update processed lengths
|
||||
new_processed_lens = processed_lens + x_lens
|
||||
|
||||
# (batch, left_context_size + chunk_size)
|
||||
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
encoder_states = states[:-2]
|
||||
(
|
||||
encoder_out,
|
||||
encoder_out_lens,
|
||||
new_encoder_states,
|
||||
) = model.encoder.streaming_forward(
|
||||
x=x,
|
||||
x_lens=x_lens,
|
||||
states=encoder_states,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
)
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
new_states = new_encoder_states + [
|
||||
new_cached_embed_left_pad,
|
||||
new_processed_lens,
|
||||
]
|
||||
return encoder_out, encoder_out_lens, new_states
|
||||
|
||||
|
||||
def decode_one_chunk(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
decode_streams: List[DecodeStream],
|
||||
) -> List[int]:
|
||||
"""Decode one chunk frames of features for each decode_streams and
|
||||
return the indexes of finished streams in a List.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
decode_streams:
|
||||
A List of DecodeStream, each belonging to a utterance.
|
||||
Returns:
|
||||
Return a List containing which DecodeStreams are finished.
|
||||
"""
|
||||
device = model.device
|
||||
chunk_size = int(params.chunk_size)
|
||||
left_context_len = int(params.left_context_frames)
|
||||
|
||||
features = []
|
||||
feature_lens = []
|
||||
states = []
|
||||
processed_lens = [] # Used in fast-beam-search
|
||||
|
||||
for stream in decode_streams:
|
||||
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
|
||||
features.append(feat)
|
||||
feature_lens.append(feat_len)
|
||||
states.append(stream.states)
|
||||
processed_lens.append(stream.done_frames)
|
||||
|
||||
feature_lens = torch.tensor(feature_lens, device=device)
|
||||
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||
|
||||
# Make sure the length after encoder_embed is at least 1.
|
||||
# The encoder_embed subsample features (T - 7) // 2
|
||||
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
||||
tail_length = chunk_size * 2 + 7 + 2 * 3
|
||||
if features.size(1) < tail_length:
|
||||
pad_length = tail_length - features.size(1)
|
||||
feature_lens += pad_length
|
||||
features = torch.nn.functional.pad(
|
||||
features,
|
||||
(0, 0, 0, pad_length),
|
||||
mode="constant",
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
states = stack_states(states)
|
||||
|
||||
encoder_out, encoder_out_lens, new_states = streaming_forward(
|
||||
features=features,
|
||||
feature_lens=feature_lens,
|
||||
model=model,
|
||||
states=states,
|
||||
chunk_size=chunk_size,
|
||||
left_context_len=left_context_len,
|
||||
)
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
processed_lens = torch.tensor(processed_lens, device=device)
|
||||
processed_lens = processed_lens + encoder_out_lens
|
||||
fast_beam_search_one_best(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
processed_lens=processed_lens,
|
||||
streams=decode_streams,
|
||||
beam=params.beam,
|
||||
max_states=params.max_states,
|
||||
max_contexts=params.max_contexts,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
modified_beam_search(
|
||||
model=model,
|
||||
streams=decode_streams,
|
||||
encoder_out=encoder_out,
|
||||
num_active_paths=params.num_active_paths,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
|
||||
states = unstack_states(new_states)
|
||||
|
||||
finished_streams = []
|
||||
for i in range(len(decode_streams)):
|
||||
decode_streams[i].states = states[i]
|
||||
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||
if decode_streams[i].done:
|
||||
finished_streams.append(i)
|
||||
|
||||
return finished_streams
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
cuts: CutSet,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
cuts:
|
||||
Lhotse Cutset containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
device = model.device
|
||||
|
||||
opts = FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = 16000
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
log_interval = 100
|
||||
|
||||
decode_results = []
|
||||
# Contain decode streams currently running.
|
||||
decode_streams = []
|
||||
for num, cut in enumerate(cuts):
|
||||
# each utterance has a DecodeStream.
|
||||
initial_states = get_init_states(model=model, batch_size=1, device=device)
|
||||
decode_stream = DecodeStream(
|
||||
params=params,
|
||||
cut_id=cut.id,
|
||||
initial_states=initial_states,
|
||||
decoding_graph=decoding_graph,
|
||||
device=device,
|
||||
)
|
||||
|
||||
audio: np.ndarray = cut.load_audio()
|
||||
# audio.shape: (1, num_samples)
|
||||
assert len(audio.shape) == 2
|
||||
assert audio.shape[0] == 1, "Should be single channel"
|
||||
assert audio.dtype == np.float32, audio.dtype
|
||||
|
||||
# The trained model is using normalized samples
|
||||
# - this is to avoid sending [-32k,+32k] signal in...
|
||||
# - some lhotse AudioTransform classes can make the signal
|
||||
# be out of range [-1, 1], hence the tolerance 10
|
||||
assert (
|
||||
np.abs(audio).max() <= 10
|
||||
), "Should be normalized to [-1, 1], 10 for tolerance..."
|
||||
|
||||
samples = torch.from_numpy(audio).squeeze(0)
|
||||
|
||||
fbank = Fbank(opts)
|
||||
feature = fbank(samples.to(device))
|
||||
decode_stream.set_features(feature, tail_pad_len=30)
|
||||
decode_stream.ground_truth = cut.supervisions[0].text
|
||||
|
||||
decode_streams.append(decode_stream)
|
||||
|
||||
while len(decode_streams) >= params.num_decode_streams:
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
sp.decode(decode_streams[i].decoding_result()).split(),
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
if num % log_interval == 0:
|
||||
logging.info(f"Cuts processed until now is {num}.")
|
||||
|
||||
# decode final chunks of last sequences
|
||||
while len(decode_streams):
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
sp.decode(decode_streams[i].decoding_result()).split(),
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
key = "greedy_search"
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
key = (
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
key = f"num_active_paths_{params.num_active_paths}"
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
return {key: decode_results}
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
CommonVoiceAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
assert params.causal, params.causal
|
||||
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
params.suffix += f"-chunk-{params.chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||
|
||||
# for fast_beam_search
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
decoding_graph = None
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
commonvoice = CommonVoiceAsrDataModule(args)
|
||||
|
||||
test_cuts = commonvoice.test_cuts()
|
||||
dev_cuts = commonvoice.dev_cuts()
|
||||
|
||||
test_sets = ["test", "dev"]
|
||||
test_cuts = [test_cuts, dev_cuts]
|
||||
|
||||
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||
results_dict = decode_dataset(
|
||||
cuts=test_cut,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
861
egs/commonvoice/ASR/zipformer/streaming_decode_char.py
Executable file
861
egs/commonvoice/ASR/zipformer/streaming_decode_char.py
Executable file
@ -0,0 +1,861 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022-2024 Xiaomi Corporation (Authors: Wei Kang,
|
||||
# Fangjun Kuang,
|
||||
# Zengwei Yao,
|
||||
# Zengrui Jin)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./zipformer/streaming_decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--causal 1 \
|
||||
--chunk-size 32 \
|
||||
--left-context-frames 256 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--decoding-method greedy_search \
|
||||
--num-decode-streams 2000
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import torch
|
||||
from asr_datamodule import CommonVoiceAsrDataModule
|
||||
from decode_stream import DecodeStream
|
||||
from kaldifeat import Fbank, FbankOptions
|
||||
from lhotse import CutSet
|
||||
from streaming_beam_search import (
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
modified_beam_search,
|
||||
)
|
||||
from torch import Tensor, nn
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
make_pad_mask,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/zh-HK/lang_char",
|
||||
help="Path to the lang dir(containing lexicon, tokens, etc.)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Supported decoding methods are:
|
||||
greedy_search
|
||||
modified_beam_search
|
||||
fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num_active_paths",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=32,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-decode-streams",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The number of streams that can be decoded parallel.",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_init_states(
|
||||
model: nn.Module,
|
||||
batch_size: int = 1,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> List[torch.Tensor]:
|
||||
"""
|
||||
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
||||
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
||||
states[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
"""
|
||||
states = model.encoder.get_init_states(batch_size, device)
|
||||
|
||||
embed_states = model.encoder_embed.get_init_states(batch_size, device)
|
||||
states.append(embed_states)
|
||||
|
||||
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||
states.append(processed_lens)
|
||||
|
||||
return states
|
||||
|
||||
|
||||
def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
|
||||
"""Stack list of zipformer states that correspond to separate utterances
|
||||
into a single emformer state, so that it can be used as an input for
|
||||
zipformer when those utterances are formed into a batch.
|
||||
|
||||
Args:
|
||||
state_list:
|
||||
Each element in state_list corresponding to the internal state
|
||||
of the zipformer model for a single utterance. For element-n,
|
||||
state_list[n] is a list of cached tensors of all encoder layers. For layer-i,
|
||||
state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1,
|
||||
cached_val2, cached_conv1, cached_conv2).
|
||||
state_list[n][-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
state_list[n][-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`unstack_states`.
|
||||
"""
|
||||
batch_size = len(state_list)
|
||||
assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0])
|
||||
tot_num_layers = (len(state_list[0]) - 2) // 6
|
||||
|
||||
batch_states = []
|
||||
for layer in range(tot_num_layers):
|
||||
layer_offset = layer * 6
|
||||
# cached_key: (left_context_len, batch_size, key_dim)
|
||||
cached_key = torch.cat(
|
||||
[state_list[i][layer_offset] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||
cached_nonlin_attn = torch.cat(
|
||||
[state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||
cached_val1 = torch.cat(
|
||||
[state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||
cached_val2 = torch.cat(
|
||||
[state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_conv1: (#batch, channels, left_pad)
|
||||
cached_conv1 = torch.cat(
|
||||
[state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0
|
||||
)
|
||||
# cached_conv2: (#batch, channels, left_pad)
|
||||
cached_conv2 = torch.cat(
|
||||
[state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0
|
||||
)
|
||||
batch_states += [
|
||||
cached_key,
|
||||
cached_nonlin_attn,
|
||||
cached_val1,
|
||||
cached_val2,
|
||||
cached_conv1,
|
||||
cached_conv2,
|
||||
]
|
||||
|
||||
cached_embed_left_pad = torch.cat(
|
||||
[state_list[i][-2] for i in range(batch_size)], dim=0
|
||||
)
|
||||
batch_states.append(cached_embed_left_pad)
|
||||
|
||||
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
|
||||
batch_states.append(processed_lens)
|
||||
|
||||
return batch_states
|
||||
|
||||
|
||||
def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
|
||||
"""Unstack the zipformer state corresponding to a batch of utterances
|
||||
into a list of states, where the i-th entry is the state from the i-th
|
||||
utterance in the batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`stack_states`.
|
||||
|
||||
Args:
|
||||
batch_states: A list of cached tensors of all encoder layers. For layer-i,
|
||||
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
|
||||
cached_conv1, cached_conv2).
|
||||
state_list[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
|
||||
Returns:
|
||||
state_list: A list of list. Each element in state_list corresponding to the internal state
|
||||
of the zipformer model for a single utterance.
|
||||
"""
|
||||
assert (len(batch_states) - 2) % 6 == 0, len(batch_states)
|
||||
tot_num_layers = (len(batch_states) - 2) // 6
|
||||
|
||||
processed_lens = batch_states[-1]
|
||||
batch_size = processed_lens.shape[0]
|
||||
|
||||
state_list = [[] for _ in range(batch_size)]
|
||||
|
||||
for layer in range(tot_num_layers):
|
||||
layer_offset = layer * 6
|
||||
# cached_key: (left_context_len, batch_size, key_dim)
|
||||
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
|
||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||
cached_val1_list = batch_states[layer_offset + 2].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||
cached_val2_list = batch_states[layer_offset + 3].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_conv1: (#batch, channels, left_pad)
|
||||
cached_conv1_list = batch_states[layer_offset + 4].chunk(
|
||||
chunks=batch_size, dim=0
|
||||
)
|
||||
# cached_conv2: (#batch, channels, left_pad)
|
||||
cached_conv2_list = batch_states[layer_offset + 5].chunk(
|
||||
chunks=batch_size, dim=0
|
||||
)
|
||||
for i in range(batch_size):
|
||||
state_list[i] += [
|
||||
cached_key_list[i],
|
||||
cached_nonlin_attn_list[i],
|
||||
cached_val1_list[i],
|
||||
cached_val2_list[i],
|
||||
cached_conv1_list[i],
|
||||
cached_conv2_list[i],
|
||||
]
|
||||
|
||||
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
|
||||
for i in range(batch_size):
|
||||
state_list[i].append(cached_embed_left_pad_list[i])
|
||||
|
||||
processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0)
|
||||
for i in range(batch_size):
|
||||
state_list[i].append(processed_lens_list[i])
|
||||
|
||||
return state_list
|
||||
|
||||
|
||||
def streaming_forward(
|
||||
features: Tensor,
|
||||
feature_lens: Tensor,
|
||||
model: nn.Module,
|
||||
states: List[Tensor],
|
||||
chunk_size: int,
|
||||
left_context_len: int,
|
||||
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
||||
"""
|
||||
Returns encoder outputs, output lengths, and updated states.
|
||||
"""
|
||||
cached_embed_left_pad = states[-2]
|
||||
(x, x_lens, new_cached_embed_left_pad) = model.encoder_embed.streaming_forward(
|
||||
x=features,
|
||||
x_lens=feature_lens,
|
||||
cached_left_pad=cached_embed_left_pad,
|
||||
)
|
||||
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
||||
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
|
||||
# processed_mask is used to mask out initial states
|
||||
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
||||
x.size(0), left_context_len
|
||||
)
|
||||
processed_lens = states[-1] # (batch,)
|
||||
# (batch, left_context_size)
|
||||
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
||||
# Update processed lengths
|
||||
new_processed_lens = processed_lens + x_lens
|
||||
|
||||
# (batch, left_context_size + chunk_size)
|
||||
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
encoder_states = states[:-2]
|
||||
(
|
||||
encoder_out,
|
||||
encoder_out_lens,
|
||||
new_encoder_states,
|
||||
) = model.encoder.streaming_forward(
|
||||
x=x,
|
||||
x_lens=x_lens,
|
||||
states=encoder_states,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
)
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
new_states = new_encoder_states + [
|
||||
new_cached_embed_left_pad,
|
||||
new_processed_lens,
|
||||
]
|
||||
return encoder_out, encoder_out_lens, new_states
|
||||
|
||||
|
||||
def decode_one_chunk(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
decode_streams: List[DecodeStream],
|
||||
) -> List[int]:
|
||||
"""Decode one chunk frames of features for each decode_streams and
|
||||
return the indexes of finished streams in a List.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
decode_streams:
|
||||
A List of DecodeStream, each belonging to a utterance.
|
||||
Returns:
|
||||
Return a List containing which DecodeStreams are finished.
|
||||
"""
|
||||
device = model.device
|
||||
chunk_size = int(params.chunk_size)
|
||||
left_context_len = int(params.left_context_frames)
|
||||
|
||||
features = []
|
||||
feature_lens = []
|
||||
states = []
|
||||
processed_lens = [] # Used in fast-beam-search
|
||||
|
||||
for stream in decode_streams:
|
||||
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
|
||||
features.append(feat)
|
||||
feature_lens.append(feat_len)
|
||||
states.append(stream.states)
|
||||
processed_lens.append(stream.done_frames)
|
||||
|
||||
feature_lens = torch.tensor(feature_lens, device=device)
|
||||
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||
|
||||
# Make sure the length after encoder_embed is at least 1.
|
||||
# The encoder_embed subsample features (T - 7) // 2
|
||||
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
||||
tail_length = chunk_size * 2 + 7 + 2 * 3
|
||||
if features.size(1) < tail_length:
|
||||
pad_length = tail_length - features.size(1)
|
||||
feature_lens += pad_length
|
||||
features = torch.nn.functional.pad(
|
||||
features,
|
||||
(0, 0, 0, pad_length),
|
||||
mode="constant",
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
states = stack_states(states)
|
||||
|
||||
encoder_out, encoder_out_lens, new_states = streaming_forward(
|
||||
features=features,
|
||||
feature_lens=feature_lens,
|
||||
model=model,
|
||||
states=states,
|
||||
chunk_size=chunk_size,
|
||||
left_context_len=left_context_len,
|
||||
)
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
processed_lens = torch.tensor(processed_lens, device=device)
|
||||
processed_lens = processed_lens + encoder_out_lens
|
||||
fast_beam_search_one_best(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
processed_lens=processed_lens,
|
||||
streams=decode_streams,
|
||||
beam=params.beam,
|
||||
max_states=params.max_states,
|
||||
max_contexts=params.max_contexts,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
modified_beam_search(
|
||||
model=model,
|
||||
streams=decode_streams,
|
||||
encoder_out=encoder_out,
|
||||
num_active_paths=params.num_active_paths,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
|
||||
states = unstack_states(new_states)
|
||||
|
||||
finished_streams = []
|
||||
for i in range(len(decode_streams)):
|
||||
decode_streams[i].states = states[i]
|
||||
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||
if decode_streams[i].done:
|
||||
finished_streams.append(i)
|
||||
|
||||
return finished_streams
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
cuts: CutSet,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
lexicon: Lexicon,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
cuts:
|
||||
Lhotse Cutset containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
device = model.device
|
||||
|
||||
opts = FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = 16000
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
log_interval = 100
|
||||
|
||||
decode_results = []
|
||||
# Contain decode streams currently running.
|
||||
decode_streams = []
|
||||
for num, cut in enumerate(cuts):
|
||||
# each utterance has a DecodeStream.
|
||||
initial_states = get_init_states(model=model, batch_size=1, device=device)
|
||||
decode_stream = DecodeStream(
|
||||
params=params,
|
||||
cut_id=cut.id,
|
||||
initial_states=initial_states,
|
||||
decoding_graph=decoding_graph,
|
||||
device=device,
|
||||
)
|
||||
|
||||
audio: np.ndarray = cut.load_audio()
|
||||
# audio.shape: (1, num_samples)
|
||||
assert len(audio.shape) == 2
|
||||
assert audio.shape[0] == 1, "Should be single channel"
|
||||
assert audio.dtype == np.float32, audio.dtype
|
||||
|
||||
# The trained model is using normalized samples
|
||||
# - this is to avoid sending [-32k,+32k] signal in...
|
||||
# - some lhotse AudioTransform classes can make the signal
|
||||
# be out of range [-1, 1], hence the tolerance 10
|
||||
assert (
|
||||
np.abs(audio).max() <= 10
|
||||
), "Should be normalized to [-1, 1], 10 for tolerance..."
|
||||
|
||||
samples = torch.from_numpy(audio).squeeze(0)
|
||||
|
||||
fbank = Fbank(opts)
|
||||
feature = fbank(samples.to(device))
|
||||
decode_stream.set_features(feature, tail_pad_len=30)
|
||||
decode_stream.ground_truth = cut.supervisions[0].text
|
||||
|
||||
decode_streams.append(decode_stream)
|
||||
|
||||
while len(decode_streams) >= params.num_decode_streams:
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
[
|
||||
lexicon.token_table[idx]
|
||||
for idx in decode_streams[i].decoding_result()
|
||||
],
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
if num % log_interval == 0:
|
||||
logging.info(f"Cuts processed until now is {num}.")
|
||||
|
||||
# decode final chunks of last sequences
|
||||
while len(decode_streams):
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
[
|
||||
lexicon.token_table[idx]
|
||||
for idx in decode_streams[i].decoding_result()
|
||||
],
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
key = "greedy_search"
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
key = (
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
key = f"num_active_paths_{params.num_active_paths}"
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
return {key: decode_results}
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
CommonVoiceAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
assert params.causal, params.causal
|
||||
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
params.suffix += f"-chunk-{params.chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||
|
||||
# for fast_beam_search
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
params.blank_id = lexicon.token_table["<blk>"]
|
||||
params.vocab_size = max(lexicon.tokens) + 1
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
decoding_graph = None
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
commonvoice = CommonVoiceAsrDataModule(args)
|
||||
|
||||
test_cuts = commonvoice.test_cuts()
|
||||
dev_cuts = commonvoice.dev_cuts()
|
||||
|
||||
test_sets = ["test", "dev"]
|
||||
test_cuts = [test_cuts, dev_cuts]
|
||||
|
||||
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||
results_dict = decode_dataset(
|
||||
cuts=test_cut,
|
||||
params=params,
|
||||
model=model,
|
||||
lexicon=lexicon,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/commonvoice/ASR/zipformer/subsampling.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/subsampling.py
|
1411
egs/commonvoice/ASR/zipformer/train.py
Executable file
1411
egs/commonvoice/ASR/zipformer/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1051
egs/commonvoice/ASR/zipformer/train_char.py
Executable file
1051
egs/commonvoice/ASR/zipformer/train_char.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/commonvoice/ASR/zipformer/zipformer.py
Symbolic link
1
egs/commonvoice/ASR/zipformer/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/zipformer.py
|
Loading…
x
Reference in New Issue
Block a user