Yuekai Zhang ebbd396c2b
update multi-hans-zh whisper-qwen-7b results (#1677)
* update qwen-7b whisper encoder results

* update qwen-7b whisper encoder results

* fix typo
2024-07-03 19:55:12 +08:00

5.0 KiB

Results

whisper_llm_zh finetuning results

Model Training Dataset Speech Encoder LLM Projector
yuekai/icefall_asr_aishell_whisper_qwen2_1.5B Aishell1 whisper-large-v2-aishell1-ft, freeze Qwen2-1.5B-Instruct, LoRA Linear, 8x downsample
yuekai/icefall_asr_multi-hans_whisper_qwen2_1.5B Multi-hans-zh whisper-large-v2-multi-hans-ft, freeze Qwen2-1.5B-Instruct, LoRA Linear, 8x downsample
yuekai/icefall_asr_multi-hans_whisper_qwen2_7B Multi-hans-zh whisper-large-v2-multi-hans-ft, freeze Qwen2-7B-Instruct, LoRA Linear, 8x downsample

CER Details:

Model yuekai/icefall_asr_aishell_whisper_qwen2_1.5B yuekai/icefall_asr_multi-hans_whisper_qwen2_1.5B yuekai/icefall_asr_multi-hans_whisper_qwen2_7B
Split Greedy Search Greedy Search Greedy Search
aishell-1 dev - 0.66 0.49
aishell-1 test 3.62 0.68 0.51
aishell-2 dev - 2.67 2.61
aishell-2 test - 2.94 2.76
aishell-4 test - 16.20 15.82
alimeeting eval - 30.86 29.27
alimeeting test - 40.50 39.48
magicdata dev - 2.50 2.27
magicdata test - 1.70 1.57
kespeech-asr dev phase1 - 6.22 4.87
kespeech-asr dev phase2 - 2.18 1.87
kespeech-asr test - 6.59 5.76
WenetSpeech dev - 4.59 4.41
WenetSpeech test_meeting - 6.41 6.06
WenetSpeech tes_net - 6.63 6.30
SPEECHIO Avg 001-026 - 4.80 4.50

Command for training is:

pip install -r whisper_llm_zh/requirements.txt

pip install huggingface_hub['cli']
mkdir -p models/whisper models/qwen

# For aishell fine-tuned whisper model
huggingface-cli download --local-dir models/whisper    yuekai/icefall_asr_aishell_whisper exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt
# For multi-hans fine-tuned whisper model
# huggingface-cli download --local-dir models/whisper    yuekai/icefall_asr_multi-hans-zh_whisper v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt

# huggingface-clie download  --local-dir models/qwen     Qwen/Qwen2-7B-Instruct
huggingface-clie download  --local-dir models/qwen     Qwen/Qwen2-1.5B-Instruct

# First, we only train the projector and freeze other modules.
torchrun --nproc_per_node 8 ./whisper_llm_zh/train.py \
  --max-duration 200 \
  --exp-dir ./whisper_llm_zh/exp_test \
  --speech-encoder-path-or-name models/whisper/exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt \
  --llm-path-or-name Qwen/Qwen2-1.5B-Instruct \
  --manifest-dir data/fbank \
  --deepspeed \
  --deepspeed_config ./whisper_llm_zh/ds_config_zero1.json \
  --use-flash-attn True \
  --use-lora False --unfreeze-llm False

# Then we jointly train the projector and LLM LoRA modules.
torchrun --nproc_per_node 8 ./whisper_llm_zh/train.py \
  --max-duration 200 \
  --exp-dir ./whisper_llm_zh/exp_test \
  --speech-encoder-path-or-name models/whisper/exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt \
  --llm-path-or-name Qwen/Qwen2-1.5B-Instruct \
  --manifest-dir data/fbank \
  --deepspeed \
  --deepspeed_config ./whisper_llm_zh/ds_config_zero1.json \
  --use-flash-attn True \
  --use-lora True --unfreeze-llm True
  --pretrained-model-path ./whisper_llm_zh/exp_test/epoch-3.pt

Command for decoding using fine-tuned models:

mkdir -p models/whisper models/qwen models/checkpoint
huggingface-cli download --local-dir models/checkpoint yuekai/icefall_asr_aishell_whisper_qwen2_1.5B

# For aishell fine-tuned whisper model
huggingface-cli download --local-dir models/whisper    yuekai/icefall_asr_aishell_whisper exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt
# For multi-hans fine-tuned whisper model
# huggingface-cli download --local-dir models/whisper    yuekai/icefall_asr_multi-hans-zh_whisper v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt

huggingface-clie download  --local-dir models/qwen     Qwen/Qwen2-7B-Instruct

mkdir -p whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B
ln -s models/checkpoint/epoch-10-avg-5.pt whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B/epoch-999.pt

python3 ./whisper_llm_zh/decode.py \
  --max-duration 80 \
  --exp-dir whisper_llm_zh/exp_aishell_whisper_qwen2_1.5B \
  --speech-encoder-path-or-name models/whisper/exp_large_v2/whisper-large-v2-aishell1-epoch-10-avg-6.pt  \
  --llm-path-or-name models/qwen \
  --epoch 999 --avg 1 \
  --manifest-dir data/fbank \
  --use-flash-attn True \
  --use-lora True --dataset aishell