2022-04-10 23:07:41 +08:00

436 lines
12 KiB
Python
Executable File

#!/usr/bin/env python3
#
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import time
from pathlib import Path
import numpy as np
import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from emformer import LOG_EPSILON
from streaming_feature_extractor import Stream
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import AttributeDict, setup_logger
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
parser.add_argument(
"--avg-last-n",
type=int,
default=0,
help="""If positive, --epoch and --avg are ignored and it
will use the last n checkpoints exp_dir/checkpoint-xxx.pt
where xxx is the number of processed batches while
saving that checkpoint.
""",
)
parser.add_argument(
"--exp-dir",
type=str,
default="transducer_emformer/exp",
help="The experiment dir",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
""",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An interger indicating how many candidates we will keep for each
frame. Used only when --decoding-method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame.
Used only when --decoding_method is greedy_search""",
)
parser.add_argument(
"--sampling-rate",
type=float,
default=16000,
help="Sample rate of the audio",
)
add_model_arguments(parser)
return parser
def greedy_search(
model: nn.Module,
stream: Stream,
encoder_out: torch.Tensor,
sp: spm.SentencePieceProcessor,
):
"""
Args:
model:
The RNN-T model.
stream:
A stream object.
encoder_out:
A 2-D tensor of shape (T, encoder_out_dim) containing the output of
the encoder model.
sp:
The BPE model.
"""
blank_id = model.decoder.blank_id
context_size = model.decoder.context_size
device = model.device
if stream.decoder_out is None:
decoder_input = torch.tensor(
[stream.hyp.ys[-context_size:]],
device=device,
dtype=torch.int64,
)
stream.decoder_out = model.decoder(
decoder_input,
need_pad=False,
).unsqueeze(1)
# stream.decoder_out is of shape (1, 1, decoder_out_dim)
assert encoder_out.ndim == 2
T = encoder_out.size(0)
for t in range(T):
current_encoder_out = encoder_out[t].reshape(
1, 1, 1, encoder_out.size(-1)
)
logits = model.joiner(current_encoder_out, stream.decoder_out)
# logits is of shape (1, 1, 1, vocab_size)
y = logits.argmax().item()
if y == blank_id:
continue
stream.hyp.ys.append(y)
decoder_input = torch.tensor(
[stream.hyp.ys[-context_size:]],
device=device,
dtype=torch.int64,
)
stream.decoder_out = model.decoder(
decoder_input,
need_pad=False,
).unsqueeze(1)
logging.info(
f"Partial result:\n{sp.decode(stream.hyp.ys[context_size:])}"
)
def process_feature_frames(
model: nn.Module,
stream: Stream,
sp: spm.SentencePieceProcessor,
):
"""Process the feature frames contained in ``stream.feature_frames``.
Args:
model:
The RNN-T model.
stream:
The stream corresponding to the input audio samples.
sp:
The BPE model.
"""
# number of frames before subsampling
segment_length = model.encoder.segment_length
right_context_length = model.encoder.right_context_length
chunk_length = (segment_length + 3) + right_context_length
device = model.device
while len(stream.feature_frames) >= chunk_length:
# a list of tensor, each with a shape (1, feature_dim)
this_chunk = stream.feature_frames[:chunk_length]
stream.feature_frames = stream.feature_frames[segment_length:]
features = torch.cat(this_chunk, dim=0).to(device) # (T, feature_dim)
features = features.unsqueeze(0) # (1, T, feature_dim)
feature_lens = torch.tensor([features.size(1)], device=device)
(
encoder_out,
encoder_out_lens,
stream.states,
) = model.encoder.streaming_forward(
features,
feature_lens,
stream.states,
)
greedy_search(
model=model,
stream=stream,
encoder_out=encoder_out[0],
sp=sp,
)
if stream.feature_extractor.is_last_frame(stream.num_fetched_frames - 1):
assert len(stream.feature_frames) < chunk_length
if len(stream.feature_frames) > 0:
this_chunk = stream.feature_frames[:chunk_length]
stream.feature_frames = []
features = torch.cat(this_chunk, dim=0) # (T, feature_dim)
features = features.to(device).unsqueeze(0) # (1, T, feature_dim)
features = torch.nn.functional.pad(
features,
(0, 0, 0, chunk_length - features.size(1)),
value=LOG_EPSILON,
)
feature_lens = torch.tensor([features.size(1)], device=device)
(
encoder_out,
encoder_out_lens,
stream.states,
) = model.encoder.streaming_forward(
features,
feature_lens,
stream.states,
)
greedy_search(
model=model,
stream=stream,
encoder_out=encoder_out[0],
sp=sp,
)
def decode_one_utterance(
audio_samples: torch.Tensor,
model: nn.Module,
stream: Stream,
params: AttributeDict,
sp: spm.SentencePieceProcessor,
):
"""Decode one utterance.
Args:
audio_samples:
A 1-D float32 tensor of shape (num_samples,) containing the
audio samples.
model:
The RNN-T model.
feature_extractor:
The feature extractor.
params:
It is the return value of :func:`get_params`.
sp:
The BPE model.
"""
i = 0
num_samples = audio_samples.size(0)
while i < num_samples:
# Simulate streaming.
this_chunk_num_samples = torch.randint(2000, 5000, (1,)).item()
thiks_chunk_samples = audio_samples[i : (i + this_chunk_num_samples)]
i += this_chunk_num_samples
stream.accept_waveform(
sampling_rate=params.sampling_rate,
waveform=thiks_chunk_samples,
)
process_feature_frames(model=model, stream=stream, sp=sp)
stream.input_finished()
process_feature_frames(model=model, stream=stream, sp=sp)
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
# Note: params.decoding_method is currently not used.
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
setup_logger(f"{params.res_dir}/log-streaming-decode")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
params.device = device
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if params.avg_last_n > 0:
filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n]
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
model.to(device)
model.eval()
model.device = device
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
librispeech = LibriSpeechAsrDataModule(args)
test_clean_cuts = librispeech.test_clean_cuts()
for num, cut in enumerate(test_clean_cuts):
logging.info(f"Processing {num}")
stream = Stream(
context_size=model.decoder.context_size,
blank_id=model.decoder.blank_id,
)
audio: np.ndarray = cut.load_audio()
# audio.shape: (1, num_samples)
assert len(audio.shape) == 2
assert audio.shape[0] == 1, "Should be single channel"
assert audio.dtype == np.float32, audio.dtype
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
decode_one_utterance(
audio_samples=torch.from_numpy(audio).squeeze(0).to(device),
model=model,
stream=stream,
params=params,
sp=sp,
)
logging.info(f"The ground truth is:\n{cut.supervisions[0].text}")
if num >= 2:
break
time.sleep(2) # So that you can see the decoded results
if __name__ == "__main__":
torch.manual_seed(20220410)
main()