mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-04 06:34:20 +00:00
Add streaming feature extractor.
This commit is contained in:
parent
189ca555b1
commit
f16b759397
4
.flake8
4
.flake8
@ -14,3 +14,7 @@ exclude =
|
||||
.git,
|
||||
**/data/**,
|
||||
icefall/shared/make_kn_lm.py
|
||||
|
||||
ignore =
|
||||
# E203 whitespace before ':'
|
||||
E203,
|
||||
|
@ -63,11 +63,11 @@ class Emformer(EncoderInterface):
|
||||
num_encoder_layers:
|
||||
Number of encoder layers.
|
||||
segment_length:
|
||||
Number of frames per segment.
|
||||
Number of frames per segment before subsampling.
|
||||
left_context_length:
|
||||
Number of frames in the left context.
|
||||
Number of frames in the left context before subsampling.
|
||||
right_context_length:
|
||||
Number of frames in the right context.
|
||||
Number of frames in the right context before subsampling.
|
||||
max_memory_size:
|
||||
TODO.
|
||||
dropout:
|
||||
@ -94,6 +94,7 @@ class Emformer(EncoderInterface):
|
||||
else:
|
||||
self.encoder_embed = Conv2dSubsampling(num_features, d_model)
|
||||
|
||||
self.segment_length = segment_length
|
||||
self.right_context_length = right_context_length
|
||||
|
||||
assert right_context_length % subsampling_factor == 0
|
||||
|
184
egs/librispeech/ASR/transducer_emformer/export.py
Executable file
184
egs/librispeech/ASR/transducer_emformer/export.py
Executable file
@ -0,0 +1,184 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# This script converts several saved checkpoints
|
||||
# to a single one using model averaging.
|
||||
"""
|
||||
Usage:
|
||||
./transducer_emformer/export.py \
|
||||
--exp-dir ./transducer_emformer/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--epoch 20 \
|
||||
--avg 10
|
||||
|
||||
It will generate a file exp_dir/pretrained.pt
|
||||
|
||||
To use the generated file with `transducer_emformer/decode.py`,
|
||||
you can do:
|
||||
|
||||
cd /path/to/exp_dir
|
||||
ln -s pretrained.pt epoch-9999.pt
|
||||
|
||||
cd /path/to/egs/librispeech/ASR
|
||||
./transducer_emformer/decode.py \
|
||||
--exp-dir ./transducer_emformer/exp \
|
||||
--epoch 9999 \
|
||||
--avg 1 \
|
||||
--max-duration 1000 \
|
||||
--bpe-model data/lang_bpe_500/bpe.model
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless/exp",
|
||||
help="""It specifies the directory where all training related
|
||||
files, e.g., checkpoints, log, etc, are saved
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-model",
|
||||
type=str,
|
||||
default="data/lang_bpe_500/bpe.model",
|
||||
help="Path to the BPE model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--jit",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to save a model after applying torch.jit.script.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
assert args.jit is False, "Support torchscript will be added later"
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(params.bpe_model)
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
model.to(device)
|
||||
|
||||
if params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
|
||||
model.eval()
|
||||
|
||||
model.to("cpu")
|
||||
model.eval()
|
||||
|
||||
if params.jit:
|
||||
logging.info("Using torch.jit.script")
|
||||
model = torch.jit.script(model)
|
||||
filename = params.exp_dir / "cpu_jit.pt"
|
||||
model.save(str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
else:
|
||||
logging.info("Not using torch.jit.script")
|
||||
# Save it using a format so that it can be loaded
|
||||
# by :func:`load_checkpoint`
|
||||
filename = params.exp_dir / "pretrained.pt"
|
||||
torch.save({"model": model.state_dict()}, str(filename))
|
||||
logging.info(f"Saved to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
main()
|
@ -20,14 +20,14 @@ import argparse
|
||||
import logging
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import List, Optional
|
||||
|
||||
import kaldifeat
|
||||
import numpy as np
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import LibriSpeechAsrDataModule
|
||||
from emformer import LOG_EPSILON
|
||||
from streaming_feature_extractor import Stream
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall.checkpoint import (
|
||||
@ -147,10 +147,10 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
"--sampling-rate",
|
||||
type=float,
|
||||
default=16000,
|
||||
help="The sample rate of the input sound file",
|
||||
help="Sample rate of the audio",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
@ -158,32 +158,159 @@ def get_parser():
|
||||
return parser
|
||||
|
||||
|
||||
def get_feature_extractor(
|
||||
params: AttributeDict,
|
||||
) -> kaldifeat.Fbank:
|
||||
logging.info("Constructing Fbank computer")
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.device = params.device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = True
|
||||
opts.frame_opts.samp_freq = params.sample_rate
|
||||
opts.mel_opts.num_bins = params.feature_dim
|
||||
def greedy_search(
|
||||
model: nn.Module,
|
||||
stream: Stream,
|
||||
encoder_out: torch.Tensor,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
model:
|
||||
The RNN-T model.
|
||||
stream:
|
||||
A stream object.
|
||||
encoder_out:
|
||||
A 2-D tensor of shape (T, encoder_out_dim) containing the output of
|
||||
the encoder model.
|
||||
sp:
|
||||
The BPE model.
|
||||
"""
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
device = model.device
|
||||
|
||||
return kaldifeat.Fbank(opts)
|
||||
if stream.decoder_out is None:
|
||||
decoder_input = torch.tensor(
|
||||
[stream.hyp.ys[-context_size:]],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
stream.decoder_out = model.decoder(
|
||||
decoder_input,
|
||||
need_pad=False,
|
||||
).unsqueeze(1)
|
||||
# stream.decoder_out is of shape (1, 1, decoder_out_dim)
|
||||
|
||||
assert encoder_out.ndim == 2
|
||||
|
||||
T = encoder_out.size(0)
|
||||
for t in range(T):
|
||||
current_encoder_out = encoder_out[t].reshape(
|
||||
1, 1, 1, encoder_out.size(-1)
|
||||
)
|
||||
logits = model.joiner(current_encoder_out, stream.decoder_out)
|
||||
# logits is of shape (1, 1, 1, vocab_size)
|
||||
y = logits.argmax().item()
|
||||
if y == blank_id:
|
||||
continue
|
||||
stream.hyp.ys.append(y)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[stream.hyp.ys[-context_size:]],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
|
||||
stream.decoder_out = model.decoder(
|
||||
decoder_input,
|
||||
need_pad=False,
|
||||
).unsqueeze(1)
|
||||
|
||||
logging.info(
|
||||
f"Partial result:\n{sp.decode(stream.hyp.ys[context_size:])}"
|
||||
)
|
||||
|
||||
|
||||
def process_feature_frames(
|
||||
model: nn.Module,
|
||||
stream: Stream,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
):
|
||||
"""Process the feature frames contained in ``stream.feature_frames``.
|
||||
Args:
|
||||
model:
|
||||
The RNN-T model.
|
||||
stream:
|
||||
The stream corresponding to the input audio samples.
|
||||
sp:
|
||||
The BPE model.
|
||||
"""
|
||||
# number of frames before subsampling
|
||||
segment_length = model.encoder.segment_length
|
||||
|
||||
right_context_length = model.encoder.right_context_length
|
||||
|
||||
chunk_length = (segment_length + 3) + right_context_length
|
||||
|
||||
device = model.device
|
||||
while len(stream.feature_frames) >= chunk_length:
|
||||
# a list of tensor, each with a shape (1, feature_dim)
|
||||
this_chunk = stream.feature_frames[:chunk_length]
|
||||
|
||||
stream.feature_frames = stream.feature_frames[segment_length:]
|
||||
features = torch.cat(this_chunk, dim=0).to(device) # (T, feature_dim)
|
||||
features = features.unsqueeze(0) # (1, T, feature_dim)
|
||||
feature_lens = torch.tensor([features.size(1)], device=device)
|
||||
(
|
||||
encoder_out,
|
||||
encoder_out_lens,
|
||||
stream.states,
|
||||
) = model.encoder.streaming_forward(
|
||||
features,
|
||||
feature_lens,
|
||||
stream.states,
|
||||
)
|
||||
greedy_search(
|
||||
model=model,
|
||||
stream=stream,
|
||||
encoder_out=encoder_out[0],
|
||||
sp=sp,
|
||||
)
|
||||
|
||||
if stream.feature_extractor.is_last_frame(stream.num_fetched_frames - 1):
|
||||
assert len(stream.feature_frames) < chunk_length
|
||||
|
||||
if len(stream.feature_frames) > 0:
|
||||
this_chunk = stream.feature_frames[:chunk_length]
|
||||
stream.feature_frames = []
|
||||
features = torch.cat(this_chunk, dim=0) # (T, feature_dim)
|
||||
features = features.to(device).unsqueeze(0) # (1, T, feature_dim)
|
||||
features = torch.nn.functional.pad(
|
||||
features,
|
||||
(0, 0, 0, chunk_length - features.size(1)),
|
||||
value=LOG_EPSILON,
|
||||
)
|
||||
feature_lens = torch.tensor([features.size(1)], device=device)
|
||||
(
|
||||
encoder_out,
|
||||
encoder_out_lens,
|
||||
stream.states,
|
||||
) = model.encoder.streaming_forward(
|
||||
features,
|
||||
feature_lens,
|
||||
stream.states,
|
||||
)
|
||||
greedy_search(
|
||||
model=model,
|
||||
stream=stream,
|
||||
encoder_out=encoder_out[0],
|
||||
sp=sp,
|
||||
)
|
||||
|
||||
|
||||
def decode_one_utterance(
|
||||
audio_samples: torch.Tensor,
|
||||
model: nn.Module,
|
||||
fbank: kaldifeat.Fbank,
|
||||
stream: Stream,
|
||||
params: AttributeDict,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
):
|
||||
"""Decode one utterance.
|
||||
Args:
|
||||
audio_samples:
|
||||
A 1-D float32 tensor of shape (num_samples,) containing the normalized
|
||||
audio samples. Normalized means the samples is in the range [-1, 1].
|
||||
A 1-D float32 tensor of shape (num_samples,) containing the
|
||||
audio samples.
|
||||
model:
|
||||
The RNN-T model.
|
||||
feature_extractor:
|
||||
@ -193,80 +320,23 @@ def decode_one_utterance(
|
||||
sp:
|
||||
The BPE model.
|
||||
"""
|
||||
sample_rate = params.sample_rate
|
||||
frame_shift = sample_rate * fbank.opts.frame_opts.frame_shift_ms / 1000
|
||||
|
||||
frame_shift = int(frame_shift) # number of samples
|
||||
|
||||
# Note: We add 3 here because the subsampling method ((n-1)//2-1))//2
|
||||
# is not equal to n//4. We will switch to a subsampling method that
|
||||
# satisfies n//4, where n is the number of input frames.
|
||||
segment_length = (params.segment_length + 3) * frame_shift
|
||||
|
||||
right_context_length = params.right_context_length * frame_shift
|
||||
chunk_size = segment_length + right_context_length
|
||||
|
||||
opts = fbank.opts.frame_opts
|
||||
chunk_size += (
|
||||
(opts.frame_length_ms - opts.frame_shift_ms) / 1000 * sample_rate
|
||||
)
|
||||
|
||||
chunk_size = int(chunk_size)
|
||||
|
||||
states: Optional[List[List[torch.Tensor]]] = None
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
context_size = model.decoder.context_size
|
||||
|
||||
device = model.device
|
||||
|
||||
hyp = [blank_id] * context_size
|
||||
|
||||
decoder_input = torch.tensor(hyp, device=device, dtype=torch.int64).reshape(
|
||||
1, context_size
|
||||
)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
|
||||
i = 0
|
||||
num_samples = audio_samples.size(0)
|
||||
while i < num_samples:
|
||||
# Note: The current approach of computing the features is not ideal
|
||||
# since it re-computes the features for the right context.
|
||||
chunk = audio_samples[i : i + chunk_size] # noqa
|
||||
i += segment_length
|
||||
if chunk.size(0) < chunk_size:
|
||||
chunk = torch.nn.functional.pad(
|
||||
chunk, pad=(0, chunk_size - chunk.size(0))
|
||||
)
|
||||
features = fbank(chunk)
|
||||
feature_lens = torch.tensor([features.size(0)], device=params.device)
|
||||
# Simulate streaming.
|
||||
this_chunk_num_samples = torch.randint(2000, 5000, (1,)).item()
|
||||
|
||||
features = features.unsqueeze(0) # (1, T, C)
|
||||
thiks_chunk_samples = audio_samples[i : (i + this_chunk_num_samples)]
|
||||
i += this_chunk_num_samples
|
||||
|
||||
encoder_out, encoder_out_lens, states = model.encoder.streaming_forward(
|
||||
features,
|
||||
feature_lens,
|
||||
states,
|
||||
stream.accept_waveform(
|
||||
sampling_rate=params.sampling_rate,
|
||||
waveform=thiks_chunk_samples,
|
||||
)
|
||||
for t in range(encoder_out_lens.item()):
|
||||
# fmt: off
|
||||
current_encoder_out = encoder_out[0:1, t:t+1, :].unsqueeze(2)
|
||||
# fmt: on
|
||||
logits = model.joiner(current_encoder_out, decoder_out.unsqueeze(1))
|
||||
# logits is (1, 1, 1, vocab_size)
|
||||
y = logits.argmax().item()
|
||||
if y == blank_id:
|
||||
continue
|
||||
process_feature_frames(model=model, stream=stream, sp=sp)
|
||||
|
||||
hyp.append(y)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[hyp[-context_size:]], device=device, dtype=torch.int64
|
||||
).reshape(1, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
logging.info(f"Partial result:\n{sp.decode(hyp[context_size:])}")
|
||||
stream.input_finished()
|
||||
process_feature_frames(model=model, stream=stream, sp=sp)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
@ -333,10 +403,12 @@ def main():
|
||||
|
||||
test_clean_cuts = librispeech.test_clean_cuts()
|
||||
|
||||
fbank = get_feature_extractor(params)
|
||||
|
||||
for num, cut in enumerate(test_clean_cuts):
|
||||
logging.info("Processing {num}")
|
||||
logging.info(f"Processing {num}")
|
||||
stream = Stream(
|
||||
context_size=model.decoder.context_size,
|
||||
blank_id=model.decoder.blank_id,
|
||||
)
|
||||
|
||||
audio: np.ndarray = cut.load_audio()
|
||||
# audio.shape: (1, num_samples)
|
||||
@ -347,16 +419,17 @@ def main():
|
||||
decode_one_utterance(
|
||||
audio_samples=torch.from_numpy(audio).squeeze(0).to(device),
|
||||
model=model,
|
||||
fbank=fbank,
|
||||
stream=stream,
|
||||
params=params,
|
||||
sp=sp,
|
||||
)
|
||||
|
||||
logging.info(f"The ground truth is:\n{cut.supervisions[0].text}")
|
||||
if num >= 0:
|
||||
if num >= 2:
|
||||
break
|
||||
time.sleep(2) # So that you can see the decoded results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(20220410)
|
||||
main()
|
||||
|
@ -0,0 +1,106 @@
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
import torch
|
||||
from beam_search import Hypothesis
|
||||
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
|
||||
|
||||
|
||||
def _create_streaming_feature_extractr() -> OnlineFeature:
|
||||
"""Create a CPU streaming feature extractor.
|
||||
|
||||
At present, we assume it returns a fbank feature extractor with
|
||||
fixed options. In the future, we will support passing in the options
|
||||
from outside.
|
||||
|
||||
Returns:
|
||||
Return a CPU streaming feature extractor.
|
||||
"""
|
||||
opts = FbankOptions()
|
||||
opts.device = "cpu"
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = 16000
|
||||
opts.mel_opts.num_bins = 80
|
||||
return OnlineFbank(opts)
|
||||
|
||||
|
||||
class Stream(object):
|
||||
def __init__(self, context_size: int, blank_id: int = 0) -> None:
|
||||
"""Context size of the RNN-T decoder model."""
|
||||
self.feature_extractor = _create_streaming_feature_extractr()
|
||||
self.hyp = Hypothesis(
|
||||
ys=([blank_id] * context_size),
|
||||
log_prob=torch.tensor([0.0]),
|
||||
) # for greedy search, will extend it to beam search
|
||||
|
||||
# It contains a list of 1-D tensors representing the feature frames.
|
||||
self.feature_frames: List[torch.Tensor] = []
|
||||
|
||||
self.num_fetched_frames = 0
|
||||
|
||||
# For the emformer model, it contains the states of each
|
||||
# encoder layer.
|
||||
self.states: Optional[List[List[torch.Tensor]]] = None
|
||||
|
||||
# For the RNN-T decoder, it contains the decoder output
|
||||
# corresponding to the decoder input self.hyp.ys[-context_size:]
|
||||
self.decoder_out: Optional[torch.Tensor] = None
|
||||
|
||||
def accept_waveform(
|
||||
self,
|
||||
sampling_rate: float,
|
||||
waveform: torch.Tensor,
|
||||
) -> None:
|
||||
"""Feed audio samples to the feature extractor and compute features
|
||||
if there are enough samples available.
|
||||
|
||||
Caution:
|
||||
The range of the audio samples should match the one used in the
|
||||
training. That is, if you use the range [-1, 1] in the training, then
|
||||
the input audio samples should also be normalized to [-1, 1].
|
||||
|
||||
Args
|
||||
sampling_rate:
|
||||
The sampling rate of the input audio samples. It is used for sanity
|
||||
check to ensure that the input sampling rate equals to the one
|
||||
used in the extractor. If they are not equal, then no resampling
|
||||
will be performed; instead an error will be thrown.
|
||||
waveform:
|
||||
A 1-D torch tensor of dtype torch.float32 containing audio samples.
|
||||
It should be on CPU.
|
||||
"""
|
||||
self.feature_extractor.accept_waveform(
|
||||
sampling_rate=sampling_rate,
|
||||
waveform=waveform,
|
||||
)
|
||||
self._fetch_frames()
|
||||
|
||||
def input_finished(self) -> None:
|
||||
"""Signal that no more audio samples available and the feature
|
||||
extractor should flush the buffered samples to compute frames.
|
||||
"""
|
||||
self.feature_extractor.input_finished()
|
||||
self._fetch_frames()
|
||||
|
||||
def _fetch_frames(self) -> None:
|
||||
"""Fetch frames from the feature extractor"""
|
||||
while self.num_fetched_frames < self.feature_extractor.num_frames_ready:
|
||||
frame = self.feature_extractor.get_frame(self.num_fetched_frames)
|
||||
self.feature_frames.append(frame)
|
||||
self.num_fetched_frames += 1
|
53
egs/librispeech/ASR/transducer_emformer/test_streaming_feature_extractor.py
Executable file
53
egs/librispeech/ASR/transducer_emformer/test_streaming_feature_extractor.py
Executable file
@ -0,0 +1,53 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./transducer_emformer/test_streaming_feature_extractor.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
from streaming_feature_extractor import Stream
|
||||
|
||||
|
||||
def test_streaming_feature_extractor():
|
||||
stream = Stream(context_size=2, blank_id=0)
|
||||
samples = torch.rand(16000)
|
||||
start = 0
|
||||
while True:
|
||||
n = torch.randint(50, 500, (1,)).item()
|
||||
end = start + n
|
||||
this_chunk = samples[start:end]
|
||||
start = end
|
||||
|
||||
if len(this_chunk) == 0:
|
||||
break
|
||||
stream.accept_waveform(sampling_rate=16000, waveform=this_chunk)
|
||||
print(len(stream.feature_frames))
|
||||
stream.input_finished()
|
||||
print(len(stream.feature_frames))
|
||||
|
||||
|
||||
def main():
|
||||
test_streaming_feature_extractor()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user