icefall/README.md
Wei Kang 4151cca147
Add torch script support for Aishell and update documents (#124)
* Add aishell recipe

* Remove unnecessary code and update docs

* adapt to k2 v1.7, add docs and results

* Update conformer ctc model

* Update docs, pretrained.py & results

* Fix code style

* Fix code style

* Fix code style

* Minor fix

* Minor fix

* Fix pretrained.py

* Update pretrained model & corresponding docs

* Export torch script model for Aishell

* Add C++ deployment docs

* Minor fixes

* Fix unit test

* Update Readme
2021-11-19 16:37:05 +08:00

137 lines
4.5 KiB
Markdown

<div align="center">
<img src="https://raw.githubusercontent.com/k2-fsa/icefall/master/docs/source/_static/logo.png" width=168>
</div>
## Installation
Please refer to <https://icefall.readthedocs.io/en/latest/installation/index.html>
for installation.
## Recipes
Please refer to <https://icefall.readthedocs.io/en/latest/recipes/index.html>
for more information.
We provide four recipes at present:
- [yesno][yesno]
- [LibriSpeech][librispeech]
- [Aishell][aishell]
- [TIMIT][timit]
### yesno
This is the simplest ASR recipe in `icefall` and can be run on CPU.
Training takes less than 30 seconds and gives you the following WER:
```
[test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
```
We do provide a Colab notebook for this recipe.
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tIjjzaJc3IvGyKiMCDWO-TSnBgkcuN3B?usp=sharing)
### LibriSpeech
We provide two models for this recipe: [conformer CTC model][LibriSpeech_conformer_ctc]
and [TDNN LSTM CTC model][LibriSpeech_tdnn_lstm_ctc].
#### Conformer CTC Model
The best WER we currently have is:
| | test-clean | test-other |
|-----|------------|------------|
| WER | 2.42 | 5.73 |
We provide a Colab notebook to run a pre-trained conformer CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing)
#### TDNN LSTM CTC Model
The WER for this model is:
| | test-clean | test-other |
|-----|------------|------------|
| WER | 6.59 | 17.69 |
We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd?usp=sharing)
### Aishell
We provide two models for this recipe: [conformer CTC model][Aishell_conformer_ctc]
and [TDNN LSTM CTC model][Aishell_tdnn_lstm_ctc].
#### Conformer CTC Model
The best CER we currently have is:
| | test |
|-----|------|
| CER | 4.26 |
We provide a Colab notebook to run a pre-trained conformer CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1WnG17io5HEZ0Gn_cnh_VzK5QYOoiiklC?usp=sharing)
#### TDNN LSTM CTC Model
The CER for this model is:
| | test |
|-----|-------|
| CER | 10.16 |
We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qULaGvXq7PCu_P61oubfz9b53JzY4H3z?usp=sharing)
### TIMIT
We provide two models for this recipe: [TDNN LSTM CTC model][TIMIT_tdnn_lstm_ctc]
and [TDNN LiGRU CTC model][TIMIT_tdnn_ligru_ctc].
#### TDNN LSTM CTC Model
The best PER we currently have is:
||TEST|
|--|--|
|PER| 19.71% |
We provide a Colab notebook to run a pre-trained TDNN LSTM CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Hs9DA4V96uapw_30uNp32OMJgkuR5VVd?usp=sharing)
#### TDNN LiGRU CTC Model
The PER for this model is:
||TEST|
|--|--|
|PER| 17.66% |
We provide a Colab notebook to run a pre-trained TDNN LiGRU CTC model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/11IT-k4HQIgQngXz1uvWsEYktjqQt7Tmb?usp=sharing)
## Deployment with C++
Once you have trained a model in icefall, you may want to deploy it with C++,
without Python dependencies.
Please refer to the documentation
<https://icefall.readthedocs.io/en/latest/recipes/librispeech/conformer_ctc.html#deployment-with-c>
for how to do this.
We also provide a Colab notebook, showing you how to run a torch scripted model in [k2][k2] with C++.
Please see: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1BIGLWzS36isskMXHKcqC9ysN6pspYXs_?usp=sharing)
[LibriSpeech_tdnn_lstm_ctc]: egs/librispeech/ASR/tdnn_lstm_ctc
[LibriSpeech_conformer_ctc]: egs/librispeech/ASR/conformer_ctc
[Aishell_tdnn_lstm_ctc]: egs/aishell/ASR/tdnn_lstm_ctc
[Aishell_conformer_ctc]: egs/aishell/ASR/conformer_ctc
[TIMIT_tdnn_lstm_ctc]: egs/timit/ASR/tdnn_lstm_ctc
[TIMIT_tdnn_ligru_ctc]: egs/timit/ASR/tdnn_ligru_ctc
[yesno]: egs/yesno/ASR
[librispeech]: egs/librispeech/ASR
[aishell]: egs/aishell/ASR
[timit]: egs/timit/ASR
[k2]: https://github.com/k2-fsa/k2