mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-07 08:04:18 +00:00
1.2 KiB
1.2 KiB
Results
GigaSpeech BPE training results (Conformer-CTC)
2022-04-06
The best WER, as of 2022-04-06, for the gigaspeech is below (using HLG decoding + n-gram LM rescoring + attention decoder rescoring):
Dev | Test | |
---|---|---|
WER | 11.93 | 11.86 |
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
ngram_lm_scale | attention_scale |
---|---|
0.3 | 1.5 |
To reproduce the above result, use the following commands for training:
cd egs/gigaspeech/ASR/conformer_ctc
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./conformer_ctc/train.py \
--max-duration 120 \
--num-workers 1 \
--world-size 8 \
--exp-dir conformer_ctc/exp_500 \
--lang-dir data/lang_bpe_500
and the following command for decoding
./conformer_ctc/decode.py \
--epoch 19 \
--avg 8 \
--method attention-decoder \
--num-paths 1000 \
--exp-dir conformer_ctc/exp_500 \
--lang-dir data/lang_bpe_500 \
--max-duration 20 \
--num-workers 1
The tensorboard log for training is available at https://tensorboard.dev/experiment/rz63cmJXSK2fV9GceJtZXQ/