* add egs/xbmu_amdo31 * fix xbmu_amdo31/ASR/pruned_transducer_stateless5/train.py * fix xbmu_amdo31/ASR/pruned_transducer_stateless5/asr_datamodule.py * fix xbmu_amdo31/ASR/prepare.sh * add RESULTS.md and README.md * dix pruned_transducer_stateless5 decode.py * add transducer stateless7 * fix transducer_stateless7 * fix RESULTS.md error * Add pruned_transducer_stateless7 validation set results
2.7 KiB
Results
XBMU-AMDO31 BPE training result (Stateless Transducer)
Pruned transducer stateless 5
./pruned_transducer_stateless5
It uses pruned RNN-T.
A pre-trained model and decoding logs can be found at https://huggingface.co/syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29
You can use https://github.com/k2-fsa/sherpa to deploy it.
Number of model parameters: 87801200, i.e., 87.8 M
test | dev | comment | |
---|---|---|---|
greedy search | 11.06 | 11.73 | --epoch 28 --avg 23 --max-duration 600 |
beam search | 10.64 | 11.42 | --epoch 28 --avg 23 --max-duration 600 |
modified beam search | 10.57 | 11.24 | --epoch 28 --avg 23 --max-duration 600 |
Training command is:
cd egs/xbmu_amdo31/ASR
./prepare.sh
export CUDA_VISIBLE_DEVICES="0"
./pruned_transducer_stateless5/train.py
Caution: It uses --context-size=1
.
The decoding command is:
for method in greedy_search beam_search modified_beam_search;
do
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 23 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 600 \
--decoding-method $method
done
pruned_transducer_stateless7 (zipformer)
See https://github.com/k2-fsa/icefall/pull/672 for more details.
You can find a pretrained model, training logs, decoding logs, and decoding results at: https://huggingface.co/syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02
You can use https://github.com/k2-fsa/sherpa to deploy it.
Number of model parameters: 70369391, i.e., 70.37 M
test | dev | comment | |
---|---|---|---|
greedy search | 10.06 | 10.59 | --epoch 23 --avg 11 --max-duration 600 |
beam search | 9.77 | 10.11 | --epoch 23 --avg 11 --max-duration 600 |
modified beam search | 9.7 | 10.12 | --epoch 23 --avg 11 --max-duration 600 |
The training commands are:
export CUDA_VISIBLE_DEVICES="0"
./pruned_transducer_stateless7/train.py
The decoding commands are:
for m in greedy_search beam_search modified_beam_search; do
for epoch in 23; do
for avg in 11; do
./pruned_transducer_stateless7/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless7/exp \
--max-duration 600 \
--decoding-method $m
done
done
done