icefall/egs/xbmu_amdo31/ASR/RESULTS.md
Senyan Li e6a6727012
Add Tibetan Amdo dialect xbmu_amdo31 in egs (#706)
* add egs/xbmu_amdo31

* fix xbmu_amdo31/ASR/pruned_transducer_stateless5/train.py

* fix xbmu_amdo31/ASR/pruned_transducer_stateless5/asr_datamodule.py

* fix xbmu_amdo31/ASR/prepare.sh

* add RESULTS.md and README.md

* dix pruned_transducer_stateless5 decode.py

* add transducer stateless7

* fix transducer_stateless7

* fix RESULTS.md error

* Add pruned_transducer_stateless7 validation set results
2022-12-03 23:50:49 +08:00

2.7 KiB

Results

XBMU-AMDO31 BPE training result (Stateless Transducer)

Pruned transducer stateless 5

./pruned_transducer_stateless5

It uses pruned RNN-T.

A pre-trained model and decoding logs can be found at https://huggingface.co/syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29

You can use https://github.com/k2-fsa/sherpa to deploy it.

Number of model parameters: 87801200, i.e., 87.8 M

test dev comment
greedy search 11.06 11.73 --epoch 28 --avg 23 --max-duration 600
beam search 10.64 11.42 --epoch 28 --avg 23 --max-duration 600
modified beam search 10.57 11.24 --epoch 28 --avg 23 --max-duration 600

Training command is:

cd egs/xbmu_amdo31/ASR
./prepare.sh

export CUDA_VISIBLE_DEVICES="0"

./pruned_transducer_stateless5/train.py

Caution: It uses --context-size=1.

The decoding command is:

for method in greedy_search beam_search modified_beam_search;
do
./pruned_transducer_stateless5/decode.py \
    --epoch 28 \
    --avg 23 \
    --exp-dir ./pruned_transducer_stateless5/exp \
    --max-duration 600 \
    --decoding-method $method
done

pruned_transducer_stateless7 (zipformer)

See https://github.com/k2-fsa/icefall/pull/672 for more details.

pruned_transducer_stateless7

You can find a pretrained model, training logs, decoding logs, and decoding results at: https://huggingface.co/syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02

You can use https://github.com/k2-fsa/sherpa to deploy it.

Number of model parameters: 70369391, i.e., 70.37 M

test dev comment
greedy search 10.06 10.59 --epoch 23 --avg 11 --max-duration 600
beam search 9.77 10.11 --epoch 23 --avg 11 --max-duration 600
modified beam search 9.7 10.12 --epoch 23 --avg 11 --max-duration 600

The training commands are:

export CUDA_VISIBLE_DEVICES="0"

./pruned_transducer_stateless7/train.py

The decoding commands are:

for m in greedy_search beam_search modified_beam_search; do
  for epoch in 23; do
    for avg in 11; do
      ./pruned_transducer_stateless7/decode.py \
          --epoch $epoch \
          --avg $avg \
          --exp-dir ./pruned_transducer_stateless7/exp \
          --max-duration 600 \
          --decoding-method $m
    done
  done
done