mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
428 lines
14 KiB
Bash
Executable File
428 lines
14 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
|
|
|
set -eou pipefail
|
|
|
|
nj=15
|
|
stage=0
|
|
stop_stage=100
|
|
|
|
# Split L subset to this number of pieces
|
|
# This is to avoid OOM during feature extraction.
|
|
num_splits=1000
|
|
|
|
# We assume dl_dir (download dir) contains the following
|
|
# directories and files. If not, they will be downloaded
|
|
# by this script automatically.
|
|
#
|
|
# - $dl_dir/WenetSpeech
|
|
# You can find audio, WenetSpeech.json inside it.
|
|
# You can apply for the download credentials by following
|
|
# https://github.com/wenet-e2e/WenetSpeech#download
|
|
#
|
|
# - $dl_dir/musan
|
|
# This directory contains the following directories downloaded from
|
|
# http://www.openslr.org/17/
|
|
#
|
|
# - music
|
|
# - noise
|
|
# - speech
|
|
|
|
dl_dir=$PWD/download
|
|
lang_char_dir=data/lang_char
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
mkdir -p data
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "Stage 0: Download data"
|
|
|
|
[ ! -e $dl_dir/WenetSpeech ] && mkdir -p $dl_dir/WenetSpeech
|
|
|
|
# If you have pre-downloaded it to /path/to/WenetSpeech,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/WenetSpeech $dl_dir/WenetSpeech
|
|
#
|
|
if [ ! -d $dl_dir/WenetSpeech/wenet_speech ] && [ ! -f $dl_dir/WenetSpeech/metadata/v1.list ]; then
|
|
log "Stage 0: You should download WenetSpeech first"
|
|
exit 1;
|
|
fi
|
|
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
#ln -sfv /path/to/musan $dl_dir/musan
|
|
|
|
if [ ! -d $dl_dir/musan ]; then
|
|
lhotse download musan $dl_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Prepare WenetSpeech manifest"
|
|
# We assume that you have downloaded the WenetSpeech corpus
|
|
# to $dl_dir/WenetSpeech
|
|
mkdir -p data/manifests
|
|
lhotse prepare wenet-speech $dl_dir/WenetSpeech data/manifests -j $nj
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to data/musan
|
|
mkdir -p data/manifests
|
|
lhotse prepare musan $dl_dir/musan data/manifests
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
log "Stage 3: Preprocess WenetSpeech manifest"
|
|
if [ ! -f data/fbank/.preprocess_complete ]; then
|
|
python3 ./local/preprocess_wenetspeech.py --perturb-speed True
|
|
touch data/fbank/.preprocess_complete
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute features for DEV and TEST subsets of WenetSpeech (may take 2 minutes)"
|
|
python3 ./local/compute_fbank_wenetspeech_dev_test.py
|
|
fi
|
|
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "Stage 5: Split S subset into ${num_splits} pieces"
|
|
split_dir=data/fbank/S_split_${num_splits}
|
|
if [ ! -f $split_dir/.split_completed ]; then
|
|
lhotse split $num_splits ./data/fbank/cuts_S_raw.jsonl.gz $split_dir
|
|
touch $split_dir/.split_completed
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
log "Stage 6: Split M subset into ${num_splits} piece"
|
|
split_dir=data/fbank/M_split_${num_splits}
|
|
if [ ! -f $split_dir/.split_completed ]; then
|
|
lhotse split $num_splits ./data/fbank/cuts_M_raw.jsonl.gz $split_dir
|
|
touch $split_dir/.split_completed
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|
log "Stage 7: Split L subset into ${num_splits} pieces"
|
|
split_dir=data/fbank/L_split_${num_splits}
|
|
if [ ! -f $split_dir/.split_completed ]; then
|
|
lhotse split $num_splits ./data/fbank/cuts_L_raw.jsonl.gz $split_dir
|
|
touch $split_dir/.split_completed
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
|
log "Stage 8: Compute features for S"
|
|
python3 ./local/compute_fbank_wenetspeech_splits.py \
|
|
--training-subset S \
|
|
--num-workers 20 \
|
|
--batch-duration 600 \
|
|
--start 0 \
|
|
--num-splits $num_splits
|
|
fi
|
|
|
|
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
|
log "Stage 9: Compute features for M"
|
|
python3 ./local/compute_fbank_wenetspeech_splits.py \
|
|
--training-subset M \
|
|
--num-workers 20 \
|
|
--batch-duration 600 \
|
|
--start 0 \
|
|
--num-splits $num_splits
|
|
fi
|
|
|
|
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
|
log "Stage 10: Compute features for L"
|
|
python3 ./local/compute_fbank_wenetspeech_splits.py \
|
|
--training-subset L \
|
|
--num-workers 20 \
|
|
--batch-duration 600 \
|
|
--start 0 \
|
|
--num-splits $num_splits
|
|
fi
|
|
|
|
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
|
|
log "Stage 11: Combine features for S"
|
|
if [ ! -f data/fbank/cuts_S.jsonl.gz ]; then
|
|
pieces=$(find data/fbank/S_split_${num_splits} -name "cuts_S.*.jsonl.gz")
|
|
lhotse combine $pieces data/fbank/cuts_S.jsonl.gz
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
|
log "Stage 12: Combine features for M"
|
|
if [ ! -f data/fbank/cuts_M.jsonl.gz ]; then
|
|
pieces=$(find data/fbank/M_split_${num_splits} -name "cuts_M.*.jsonl.gz")
|
|
lhotse combine $pieces data/fbank/cuts_M.jsonl.gz
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then
|
|
log "Stage 13: Combine features for L"
|
|
if [ ! -f data/fbank/cuts_L.jsonl.gz ]; then
|
|
pieces=$(find data/fbank/L_split_${num_splits} -name "cuts_L.*.jsonl.gz")
|
|
lhotse combine $pieces data/fbank/cuts_L.jsonl.gz
|
|
fi
|
|
fi
|
|
|
|
whisper_mel_bins=80
|
|
if [ $stage -le 129 ] && [ $stop_stage -ge 129 ]; then
|
|
log "Stage 129: compute whisper fbank for dev and test sets"
|
|
python3 ./local/compute_fbank_wenetspeech_dev_test.py --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
|
|
fi
|
|
if [ $stage -le 130 ] && [ $stop_stage -ge 130 ]; then
|
|
log "Stage 130: Comute features for whisper training set"
|
|
|
|
split_dir=data/fbank/L_split_${num_splits}
|
|
if [ ! -f $split_dir/.split_completed ]; then
|
|
lhotse split $num_splits ./data/fbank/cuts_L_raw.jsonl.gz $split_dir
|
|
touch $split_dir/.split_completed
|
|
fi
|
|
|
|
python3 ./local/compute_fbank_wenetspeech_splits.py \
|
|
--training-subset L \
|
|
--num-workers 8 \
|
|
--batch-duration 1600 \
|
|
--start 0 \
|
|
--num-mel-bins ${whisper_mel_bins} --whisper-fbank true \
|
|
--num-splits $num_splits
|
|
|
|
if [ ! -f data/fbank/cuts_L.jsonl.gz ]; then
|
|
pieces=$(find data/fbank/L_split_${num_splits} -name "cuts_L.*.jsonl.gz")
|
|
lhotse combine $pieces data/fbank/cuts_L.jsonl.gz
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 131 ] && [ $stop_stage -ge 131 ]; then
|
|
log "Stage 131: concat feats into train set"
|
|
if [ ! -f data/fbank/cuts_L.jsonl.gz ]; then
|
|
pieces=$(find data/fbank/L_split_${num_splits} -name "cuts_L.*.jsonl.gz")
|
|
lhotse combine $pieces data/fbank/cuts_L.jsonl.gz
|
|
fi
|
|
fi
|
|
|
|
|
|
if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then
|
|
log "Stage 14: Compute fbank for musan"
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_musan.py
|
|
fi
|
|
|
|
if [ $stage -le 15 ] && [ $stop_stage -ge 15 ]; then
|
|
log "Stage 15: Prepare char based lang"
|
|
mkdir -p $lang_char_dir
|
|
|
|
if ! which jq; then
|
|
echo "This script is intended to be used with jq but you have not installed jq
|
|
Note: in Linux, you can install jq with the following command:
|
|
1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
|
|
2. chmod +x ./jq
|
|
3. cp jq /usr/bin" && exit 1
|
|
fi
|
|
if [ ! -f $lang_char_dir/text ] || [ ! -s $lang_char_dir/text ]; then
|
|
log "Prepare text."
|
|
gunzip -c data/manifests/wenetspeech_supervisions_L.jsonl.gz \
|
|
| jq '.text' | sed 's/"//g' \
|
|
| ./local/text2token.py -t "char" > $lang_char_dir/text
|
|
fi
|
|
|
|
# The implementation of chinese word segmentation for text,
|
|
# and it will take about 15 minutes.
|
|
if [ ! -f $lang_char_dir/text_words_segmentation ]; then
|
|
python3 ./local/text2segments.py \
|
|
--num-process $nj \
|
|
--input-file $lang_char_dir/text \
|
|
--output-file $lang_char_dir/text_words_segmentation
|
|
fi
|
|
|
|
cat $lang_char_dir/text_words_segmentation | sed 's/ /\n/g' \
|
|
| sort -u | sed '/^$/d' | uniq > $lang_char_dir/words_no_ids.txt
|
|
|
|
if [ ! -f $lang_char_dir/words.txt ]; then
|
|
python3 ./local/prepare_words.py \
|
|
--input-file $lang_char_dir/words_no_ids.txt \
|
|
--output-file $lang_char_dir/words.txt
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 16 ] && [ $stop_stage -ge 16 ]; then
|
|
log "Stage 16: Prepare char based L_disambig.pt"
|
|
if [ ! -f data/lang_char/L_disambig.pt ]; then
|
|
python3 ./local/prepare_char.py \
|
|
--lang-dir data/lang_char
|
|
fi
|
|
fi
|
|
|
|
# If you don't want to use LG for decoding, the following steps are not necessary.
|
|
if [ $stage -le 17 ] && [ $stop_stage -ge 17 ]; then
|
|
log "Stage 17: Prepare G"
|
|
# It will take about 20 minutes.
|
|
# We assume you have installed kaldilm, if not, please install
|
|
# it using: pip install kaldilm
|
|
if [ ! -f $lang_char_dir/3-gram.unpruned.arpa ]; then
|
|
python3 ./shared/make_kn_lm.py \
|
|
-ngram-order 3 \
|
|
-text $lang_char_dir/text_words_segmentation \
|
|
-lm $lang_char_dir/3-gram.unpruned.arpa
|
|
fi
|
|
|
|
mkdir -p data/lm
|
|
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
|
|
# It is used in building LG
|
|
python3 -m kaldilm \
|
|
--read-symbol-table="$lang_char_dir/words.txt" \
|
|
--disambig-symbol='#0' \
|
|
--max-order=3 \
|
|
$lang_char_dir/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 18 ] && [ $stop_stage -ge 18 ]; then
|
|
log "Stage 18: Compile LG"
|
|
python ./local/compile_lg.py --lang-dir $lang_char_dir
|
|
fi
|
|
|
|
# prepare RNNLM data
|
|
if [ $stage -le 19 ] && [ $stop_stage -ge 19 ]; then
|
|
log "Stage 19: Prepare LM training data"
|
|
|
|
log "Processing char based data"
|
|
text_out_dir=data/lm_char
|
|
|
|
mkdir -p $text_out_dir
|
|
|
|
log "Genearating training text data"
|
|
|
|
if [ ! -f $text_out_dir/lm_data.pt ]; then
|
|
./local/prepare_char_lm_training_data.py \
|
|
--lang-char data/lang_char \
|
|
--lm-data $lang_char_dir/text_words_segmentation \
|
|
--lm-archive $text_out_dir/lm_data.pt
|
|
fi
|
|
|
|
log "Generating DEV text data"
|
|
# prepare validation text data
|
|
if [ ! -f $text_out_dir/valid_text_words_segmentation ]; then
|
|
valid_text=${text_out_dir}/
|
|
|
|
gunzip -c data/manifests/wenetspeech_supervisions_DEV.jsonl.gz \
|
|
| jq '.text' | sed 's/"//g' \
|
|
| ./local/text2token.py -t "char" > $text_out_dir/valid_text
|
|
|
|
python3 ./local/text2segments.py \
|
|
--num-process $nj \
|
|
--input-file $text_out_dir/valid_text \
|
|
--output-file $text_out_dir/valid_text_words_segmentation
|
|
fi
|
|
|
|
./local/prepare_char_lm_training_data.py \
|
|
--lang-char data/lang_char \
|
|
--lm-data $text_out_dir/valid_text_words_segmentation \
|
|
--lm-archive $text_out_dir/lm_data_valid.pt
|
|
|
|
# prepare TEST text data
|
|
if [ ! -f $text_out_dir/TEST_text_words_segmentation ]; then
|
|
log "Prepare text for test set."
|
|
for test_set in TEST_MEETING TEST_NET; do
|
|
gunzip -c data/manifests/wenetspeech_supervisions_${test_set}.jsonl.gz \
|
|
| jq '.text' | sed 's/"//g' \
|
|
| ./local/text2token.py -t "char" > $text_out_dir/${test_set}_text
|
|
|
|
python3 ./local/text2segments.py \
|
|
--num-process $nj \
|
|
--input-file $text_out_dir/${test_set}_text \
|
|
--output-file $text_out_dir/${test_set}_text_words_segmentation
|
|
done
|
|
|
|
cat $text_out_dir/TEST_*_text_words_segmentation > $text_out_dir/test_text_words_segmentation
|
|
fi
|
|
|
|
./local/prepare_char_lm_training_data.py \
|
|
--lang-char data/lang_char \
|
|
--lm-data $text_out_dir/test_text_words_segmentation \
|
|
--lm-archive $text_out_dir/lm_data_test.pt
|
|
|
|
fi
|
|
|
|
# sort RNNLM data
|
|
if [ $stage -le 20 ] && [ $stop_stage -ge 20 ]; then
|
|
text_out_dir=data/lm_char
|
|
|
|
log "Sort lm data"
|
|
|
|
./local/sort_lm_training_data.py \
|
|
--in-lm-data $text_out_dir/lm_data.pt \
|
|
--out-lm-data $text_out_dir/sorted_lm_data.pt \
|
|
--out-statistics $text_out_dir/statistics.txt
|
|
|
|
./local/sort_lm_training_data.py \
|
|
--in-lm-data $text_out_dir/lm_data_valid.pt \
|
|
--out-lm-data $text_out_dir/sorted_lm_data-valid.pt \
|
|
--out-statistics $text_out_dir/statistics-valid.txt
|
|
|
|
./local/sort_lm_training_data.py \
|
|
--in-lm-data $text_out_dir/lm_data_test.pt \
|
|
--out-lm-data $text_out_dir/sorted_lm_data-test.pt \
|
|
--out-statistics $text_out_dir/statistics-test.txt
|
|
fi
|
|
|
|
export CUDA_VISIBLE_DEVICES="0,1"
|
|
|
|
if [ $stage -le 21 ] && [ $stop_stage -ge 21 ]; then
|
|
log "Stage 21: Train RNN LM model"
|
|
python ../../../icefall/rnn_lm/train.py \
|
|
--start-epoch 0 \
|
|
--world-size 2 \
|
|
--num-epochs 20 \
|
|
--use-fp16 0 \
|
|
--embedding-dim 2048 \
|
|
--hidden-dim 2048 \
|
|
--num-layers 2 \
|
|
--batch-size 400 \
|
|
--exp-dir rnnlm_char/exp \
|
|
--lm-data data/lm_char/sorted_lm_data.pt \
|
|
--lm-data-valid data/lm_char/sorted_lm_data-valid.pt \
|
|
--vocab-size 5537 \
|
|
--master-port 12340
|
|
fi
|
|
|
|
if [ $stage -le 22 ] && [ $stop_stage -ge 22 ]; then
|
|
log "Stage 22: Prepare pinyin based lang"
|
|
for token in full_with_tone partial_with_tone; do
|
|
lang_dir=data/lang_${token}
|
|
if [ ! -f $lang_dir/tokens.txt ]; then
|
|
cp data/lang_char/words.txt $lang_dir/words.txt
|
|
python local/prepare_pinyin.py \
|
|
--token-type $token \
|
|
--lang-dir $lang_dir
|
|
fi
|
|
python ./local/compile_lg.py --lang-dir $lang_dir
|
|
done
|
|
fi
|
|
|
|
if [ $stage -le 23 ] && [ $stop_stage -ge 23 ]; then
|
|
log "Stage 23: Modify transcript according to fixed results"
|
|
# See https://github.com/wenet-e2e/WenetSpeech/discussions/54
|
|
wget -nc https://huggingface.co/datasets/yuekai/wenetspeech_paraformer_fixed_transcript/resolve/main/text.fix -O data/fbank/text.fix
|
|
python local/fix_manifest.py \
|
|
--fixed-transcript-path data/fbank/text.fix \
|
|
--training-subset L
|
|
fi
|