#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 stage=0 stop_stage=100 # Split L subset to this number of pieces # This is to avoid OOM during feature extraction. num_splits=1000 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/WenetSpeech # You can find audio, WenetSpeech.json inside it. # You can apply for the download credentials by following # https://github.com/wenet-e2e/WenetSpeech#download # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download lang_char_dir=data/lang_char . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" [ ! -e $dl_dir/WenetSpeech ] && mkdir -p $dl_dir/WenetSpeech # If you have pre-downloaded it to /path/to/WenetSpeech, # you can create a symlink # # ln -sfv /path/to/WenetSpeech $dl_dir/WenetSpeech # if [ ! -d $dl_dir/WenetSpeech/wenet_speech ] && [ ! -f $dl_dir/WenetSpeech/metadata/v1.list ]; then log "Stage 0: You should download WenetSpeech first" exit 1; fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # #ln -sfv /path/to/musan $dl_dir/musan if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare WenetSpeech manifest" # We assume that you have downloaded the WenetSpeech corpus # to $dl_dir/WenetSpeech mkdir -p data/manifests lhotse prepare wenet-speech $dl_dir/WenetSpeech data/manifests -j $nj fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Preprocess WenetSpeech manifest" if [ ! -f data/fbank/.preprocess_complete ]; then python3 ./local/preprocess_wenetspeech.py --perturb-speed True touch data/fbank/.preprocess_complete fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute features for DEV and TEST subsets of WenetSpeech (may take 2 minutes)" python3 ./local/compute_fbank_wenetspeech_dev_test.py fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Split S subset into ${num_splits} pieces" split_dir=data/fbank/S_split_${num_splits} if [ ! -f $split_dir/.split_completed ]; then lhotse split $num_splits ./data/fbank/cuts_S_raw.jsonl.gz $split_dir touch $split_dir/.split_completed fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Split M subset into ${num_splits} piece" split_dir=data/fbank/M_split_${num_splits} if [ ! -f $split_dir/.split_completed ]; then lhotse split $num_splits ./data/fbank/cuts_M_raw.jsonl.gz $split_dir touch $split_dir/.split_completed fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Split L subset into ${num_splits} pieces" split_dir=data/fbank/L_split_${num_splits} if [ ! -f $split_dir/.split_completed ]; then lhotse split $num_splits ./data/fbank/cuts_L_raw.jsonl.gz $split_dir touch $split_dir/.split_completed fi fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Compute features for S" python3 ./local/compute_fbank_wenetspeech_splits.py \ --training-subset S \ --num-workers 20 \ --batch-duration 600 \ --start 0 \ --num-splits $num_splits fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Compute features for M" python3 ./local/compute_fbank_wenetspeech_splits.py \ --training-subset M \ --num-workers 20 \ --batch-duration 600 \ --start 0 \ --num-splits $num_splits fi if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then log "Stage 10: Compute features for L" python3 ./local/compute_fbank_wenetspeech_splits.py \ --training-subset L \ --num-workers 20 \ --batch-duration 600 \ --start 0 \ --num-splits $num_splits fi if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then log "Stage 11: Combine features for S" if [ ! -f data/fbank/cuts_S.jsonl.gz ]; then pieces=$(find data/fbank/S_split_${num_splits} -name "cuts_S.*.jsonl.gz") lhotse combine $pieces data/fbank/cuts_S.jsonl.gz fi fi if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then log "Stage 12: Combine features for M" if [ ! -f data/fbank/cuts_M.jsonl.gz ]; then pieces=$(find data/fbank/M_split_${num_splits} -name "cuts_M.*.jsonl.gz") lhotse combine $pieces data/fbank/cuts_M.jsonl.gz fi fi if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then log "Stage 13: Combine features for L" if [ ! -f data/fbank/cuts_L.jsonl.gz ]; then pieces=$(find data/fbank/L_split_${num_splits} -name "cuts_L.*.jsonl.gz") lhotse combine $pieces data/fbank/cuts_L.jsonl.gz fi fi whisper_mel_bins=80 if [ $stage -le 129 ] && [ $stop_stage -ge 129 ]; then log "Stage 129: compute whisper fbank for dev and test sets" python3 ./local/compute_fbank_wenetspeech_dev_test.py --num-mel-bins ${whisper_mel_bins} --whisper-fbank true fi if [ $stage -le 130 ] && [ $stop_stage -ge 130 ]; then log "Stage 130: Comute features for whisper training set" split_dir=data/fbank/L_split_${num_splits} if [ ! -f $split_dir/.split_completed ]; then lhotse split $num_splits ./data/fbank/cuts_L_raw.jsonl.gz $split_dir touch $split_dir/.split_completed fi python3 ./local/compute_fbank_wenetspeech_splits.py \ --training-subset L \ --num-workers 8 \ --batch-duration 1600 \ --start 0 \ --num-mel-bins ${whisper_mel_bins} --whisper-fbank true \ --num-splits $num_splits if [ ! -f data/fbank/cuts_L.jsonl.gz ]; then pieces=$(find data/fbank/L_split_${num_splits} -name "cuts_L.*.jsonl.gz") lhotse combine $pieces data/fbank/cuts_L.jsonl.gz fi fi if [ $stage -le 131 ] && [ $stop_stage -ge 131 ]; then log "Stage 131: concat feats into train set" if [ ! -f data/fbank/cuts_L.jsonl.gz ]; then pieces=$(find data/fbank/L_split_${num_splits} -name "cuts_L.*.jsonl.gz") lhotse combine $pieces data/fbank/cuts_L.jsonl.gz fi fi if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then log "Stage 14: Compute fbank for musan" mkdir -p data/fbank ./local/compute_fbank_musan.py fi if [ $stage -le 15 ] && [ $stop_stage -ge 15 ]; then log "Stage 15: Prepare char based lang" mkdir -p $lang_char_dir if ! which jq; then echo "This script is intended to be used with jq but you have not installed jq Note: in Linux, you can install jq with the following command: 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 2. chmod +x ./jq 3. cp jq /usr/bin" && exit 1 fi if [ ! -f $lang_char_dir/text ] || [ ! -s $lang_char_dir/text ]; then log "Prepare text." gunzip -c data/manifests/wenetspeech_supervisions_L.jsonl.gz \ | jq '.text' | sed 's/"//g' \ | ./local/text2token.py -t "char" > $lang_char_dir/text fi # The implementation of chinese word segmentation for text, # and it will take about 15 minutes. if [ ! -f $lang_char_dir/text_words_segmentation ]; then python3 ./local/text2segments.py \ --num-process $nj \ --input-file $lang_char_dir/text \ --output-file $lang_char_dir/text_words_segmentation fi cat $lang_char_dir/text_words_segmentation | sed 's/ /\n/g' \ | sort -u | sed '/^$/d' | uniq > $lang_char_dir/words_no_ids.txt if [ ! -f $lang_char_dir/words.txt ]; then python3 ./local/prepare_words.py \ --input-file $lang_char_dir/words_no_ids.txt \ --output-file $lang_char_dir/words.txt fi fi if [ $stage -le 16 ] && [ $stop_stage -ge 16 ]; then log "Stage 16: Prepare char based L_disambig.pt" if [ ! -f data/lang_char/L_disambig.pt ]; then python3 ./local/prepare_char.py \ --lang-dir data/lang_char fi fi # If you don't want to use LG for decoding, the following steps are not necessary. if [ $stage -le 17 ] && [ $stop_stage -ge 17 ]; then log "Stage 17: Prepare G" # It will take about 20 minutes. # We assume you have installed kaldilm, if not, please install # it using: pip install kaldilm if [ ! -f $lang_char_dir/3-gram.unpruned.arpa ]; then python3 ./shared/make_kn_lm.py \ -ngram-order 3 \ -text $lang_char_dir/text_words_segmentation \ -lm $lang_char_dir/3-gram.unpruned.arpa fi mkdir -p data/lm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building LG python3 -m kaldilm \ --read-symbol-table="$lang_char_dir/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $lang_char_dir/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt fi fi if [ $stage -le 18 ] && [ $stop_stage -ge 18 ]; then log "Stage 18: Compile LG" python ./local/compile_lg.py --lang-dir $lang_char_dir fi # prepare RNNLM data if [ $stage -le 19 ] && [ $stop_stage -ge 19 ]; then log "Stage 19: Prepare LM training data" log "Processing char based data" text_out_dir=data/lm_char mkdir -p $text_out_dir log "Genearating training text data" if [ ! -f $text_out_dir/lm_data.pt ]; then ./local/prepare_char_lm_training_data.py \ --lang-char data/lang_char \ --lm-data $lang_char_dir/text_words_segmentation \ --lm-archive $text_out_dir/lm_data.pt fi log "Generating DEV text data" # prepare validation text data if [ ! -f $text_out_dir/valid_text_words_segmentation ]; then valid_text=${text_out_dir}/ gunzip -c data/manifests/wenetspeech_supervisions_DEV.jsonl.gz \ | jq '.text' | sed 's/"//g' \ | ./local/text2token.py -t "char" > $text_out_dir/valid_text python3 ./local/text2segments.py \ --num-process $nj \ --input-file $text_out_dir/valid_text \ --output-file $text_out_dir/valid_text_words_segmentation fi ./local/prepare_char_lm_training_data.py \ --lang-char data/lang_char \ --lm-data $text_out_dir/valid_text_words_segmentation \ --lm-archive $text_out_dir/lm_data_valid.pt # prepare TEST text data if [ ! -f $text_out_dir/TEST_text_words_segmentation ]; then log "Prepare text for test set." for test_set in TEST_MEETING TEST_NET; do gunzip -c data/manifests/wenetspeech_supervisions_${test_set}.jsonl.gz \ | jq '.text' | sed 's/"//g' \ | ./local/text2token.py -t "char" > $text_out_dir/${test_set}_text python3 ./local/text2segments.py \ --num-process $nj \ --input-file $text_out_dir/${test_set}_text \ --output-file $text_out_dir/${test_set}_text_words_segmentation done cat $text_out_dir/TEST_*_text_words_segmentation > $text_out_dir/test_text_words_segmentation fi ./local/prepare_char_lm_training_data.py \ --lang-char data/lang_char \ --lm-data $text_out_dir/test_text_words_segmentation \ --lm-archive $text_out_dir/lm_data_test.pt fi # sort RNNLM data if [ $stage -le 20 ] && [ $stop_stage -ge 20 ]; then text_out_dir=data/lm_char log "Sort lm data" ./local/sort_lm_training_data.py \ --in-lm-data $text_out_dir/lm_data.pt \ --out-lm-data $text_out_dir/sorted_lm_data.pt \ --out-statistics $text_out_dir/statistics.txt ./local/sort_lm_training_data.py \ --in-lm-data $text_out_dir/lm_data_valid.pt \ --out-lm-data $text_out_dir/sorted_lm_data-valid.pt \ --out-statistics $text_out_dir/statistics-valid.txt ./local/sort_lm_training_data.py \ --in-lm-data $text_out_dir/lm_data_test.pt \ --out-lm-data $text_out_dir/sorted_lm_data-test.pt \ --out-statistics $text_out_dir/statistics-test.txt fi export CUDA_VISIBLE_DEVICES="0,1" if [ $stage -le 21 ] && [ $stop_stage -ge 21 ]; then log "Stage 21: Train RNN LM model" python ../../../icefall/rnn_lm/train.py \ --start-epoch 0 \ --world-size 2 \ --num-epochs 20 \ --use-fp16 0 \ --embedding-dim 2048 \ --hidden-dim 2048 \ --num-layers 2 \ --batch-size 400 \ --exp-dir rnnlm_char/exp \ --lm-data data/lm_char/sorted_lm_data.pt \ --lm-data-valid data/lm_char/sorted_lm_data-valid.pt \ --vocab-size 5537 \ --master-port 12340 fi if [ $stage -le 22 ] && [ $stop_stage -ge 22 ]; then log "Stage 22: Prepare pinyin based lang" for token in full_with_tone partial_with_tone; do lang_dir=data/lang_${token} if [ ! -f $lang_dir/tokens.txt ]; then cp data/lang_char/words.txt $lang_dir/words.txt python local/prepare_pinyin.py \ --token-type $token \ --lang-dir $lang_dir fi python ./local/compile_lg.py --lang-dir $lang_dir done fi if [ $stage -le 23 ] && [ $stop_stage -ge 23 ]; then log "Stage 23: Modify transcript according to fixed results" # See https://github.com/wenet-e2e/WenetSpeech/discussions/54 wget -nc https://huggingface.co/datasets/yuekai/wenetspeech_paraformer_fixed_transcript/resolve/main/text.fix -O data/fbank/text.fix python local/fix_manifest.py \ --fixed-transcript-path data/fbank/text.fix \ --training-subset L fi