icefall/egs/vctk/TTS/prepare.sh
2024-03-18 17:53:52 +08:00

141 lines
4.6 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
stage=0
stop_stage=100
use_edinburgh_vctk_url=true
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: build monotonic_align lib"
if [ ! -d vits/monotonic_align/build ]; then
cd vits/monotonic_align
python setup.py build_ext --inplace
cd ../../
else
log "monotonic_align lib already built"
fi
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/VCTK,
# you can create a symlink
#
# ln -sfv /path/to/VCTK $dl_dir/VCTK
#
if [ ! -d $dl_dir/VCTK ]; then
lhotse download vctk --use-edinburgh-vctk-url ${use_edinburgh_vctk_url} $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare VCTK manifest"
# We assume that you have downloaded the VCTK corpus
# to $dl_dir/VCTK
mkdir -p data/manifests
if [ ! -e data/manifests/.vctk.done ]; then
lhotse prepare vctk --use-edinburgh-vctk-url ${use_edinburgh_vctk_url} $dl_dir/VCTK data/manifests
touch data/manifests/.vctk.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Compute spectrogram for VCTK"
mkdir -p data/spectrogram
if [ ! -e data/spectrogram/.vctk.done ]; then
./local/compute_spectrogram_vctk.py
touch data/spectrogram/.vctk.done
fi
if [ ! -e data/spectrogram/.vctk-validated.done ]; then
log "Validating data/fbank for VCTK"
./local/validate_manifest.py \
data/spectrogram/vctk_cuts_all.jsonl.gz
touch data/spectrogram/.vctk-validated.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare phoneme tokens for VCTK"
# We assume you have installed piper_phonemize and espnet_tts_frontend.
# If not, please install them with:
# - piper_phonemize:
# refer to https://github.com/rhasspy/piper-phonemize,
# could install the pre-built wheels from https://github.com/csukuangfj/piper-phonemize/releases/tag/2023.12.5
# - espnet_tts_frontend:
# `pip install espnet_tts_frontend`, refer to https://github.com/espnet/espnet_tts_frontend/
if [ ! -e data/spectrogram/.vctk_with_token.done ]; then
./local/prepare_tokens_vctk.py
mv data/spectrogram/vctk_cuts_with_tokens_all.jsonl.gz \
data/spectrogram/vctk_cuts_all.jsonl.gz
touch data/spectrogram/.vctk_with_token.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Split the VCTK cuts into train, valid and test sets"
if [ ! -e data/spectrogram/.vctk_split.done ]; then
lhotse subset --last 600 \
data/spectrogram/vctk_cuts_all.jsonl.gz \
data/spectrogram/vctk_cuts_validtest.jsonl.gz
lhotse subset --first 100 \
data/spectrogram/vctk_cuts_validtest.jsonl.gz \
data/spectrogram/vctk_cuts_valid.jsonl.gz
lhotse subset --last 500 \
data/spectrogram/vctk_cuts_validtest.jsonl.gz \
data/spectrogram/vctk_cuts_test.jsonl.gz
rm data/spectrogram/vctk_cuts_validtest.jsonl.gz
n=$(( $(gunzip -c data/spectrogram/vctk_cuts_all.jsonl.gz | wc -l) - 600 ))
lhotse subset --first $n \
data/spectrogram/vctk_cuts_all.jsonl.gz \
data/spectrogram/vctk_cuts_train.jsonl.gz
touch data/spectrogram/.vctk_split.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Generate token file"
# We assume you have installed piper_phonemize and espnet_tts_frontend.
# If not, please install them with:
# - piper_phonemize:
# refer to https://github.com/rhasspy/piper-phonemize,
# could install the pre-built wheels from https://github.com/csukuangfj/piper-phonemize/releases/tag/2023.12.5
# - espnet_tts_frontend:
# `pip install espnet_tts_frontend`, refer to https://github.com/espnet/espnet_tts_frontend/
if [ ! -e data/tokens.txt ]; then
./local/prepare_token_file.py --tokens data/tokens.txt
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Generate speakers file"
if [ ! -e data/speakers.txt ]; then
gunzip -c data/manifests/vctk_supervisions_all.jsonl.gz \
| jq '.speaker' | sed 's/"//g' \
| sort | uniq > data/speakers.txt
fi
fi