mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Use piper_phonemize as text tokenizer in vctk TTS recipe (#1522)
* to align with PR #1524
This commit is contained in:
parent
9b0eae3b4a
commit
eec12f053d
@ -10,7 +10,7 @@ The above information is from the [CSTR VCTK website](https://datashare.ed.ac.uk
|
||||
|
||||
This recipe provides a VITS model trained on the VCTK dataset.
|
||||
|
||||
Pretrained model can be found [here](https://huggingface.co/zrjin/icefall-tts-vctk-vits-2023-12-05), note that this model was pretrained on the Edinburgh DataShare VCTK dataset.
|
||||
Pretrained model can be found [here](https://huggingface.co/zrjin/icefall-tts-vctk-vits-2024-03-18), note that this model was pretrained on the Edinburgh DataShare VCTK dataset.
|
||||
|
||||
For tutorial and more details, please refer to the [VITS documentation](https://k2-fsa.github.io/icefall/recipes/TTS/vctk/vits.html).
|
||||
|
||||
@ -21,7 +21,6 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
--world-size 4 \
|
||||
--num-epochs 1000 \
|
||||
--start-epoch 1 \
|
||||
--use-fp16 1 \
|
||||
--exp-dir vits/exp \
|
||||
--tokens data/tokens.txt
|
||||
--max-duration 350
|
||||
|
@ -1,104 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file reads the texts in given manifest and generates the file that maps tokens to IDs.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
from lhotse import load_manifest
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--manifest-file",
|
||||
type=Path,
|
||||
default=Path("data/spectrogram/vctk_cuts_all.jsonl.gz"),
|
||||
help="Path to the manifest file",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=Path,
|
||||
default=Path("data/tokens.txt"),
|
||||
help="Path to the tokens",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
|
||||
"""Write a symbol to ID mapping to a file.
|
||||
|
||||
Note:
|
||||
No need to implement `read_mapping` as it can be done
|
||||
through :func:`k2.SymbolTable.from_file`.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
Filename to save the mapping.
|
||||
sym2id:
|
||||
A dict mapping symbols to IDs.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
with open(filename, "w", encoding="utf-8") as f:
|
||||
for sym, i in sym2id.items():
|
||||
f.write(f"{sym} {i}\n")
|
||||
|
||||
|
||||
def get_token2id(manifest_file: Path) -> Dict[str, int]:
|
||||
"""Return a dict that maps token to IDs."""
|
||||
extra_tokens = [
|
||||
"<blk>", # 0 for blank
|
||||
"<sos/eos>", # 1 for sos and eos symbols.
|
||||
"<unk>", # 2 for OOV
|
||||
]
|
||||
all_tokens = set()
|
||||
|
||||
cut_set = load_manifest(manifest_file)
|
||||
|
||||
for cut in cut_set:
|
||||
# Each cut only contain one supervision
|
||||
assert len(cut.supervisions) == 1, len(cut.supervisions)
|
||||
for t in cut.tokens:
|
||||
all_tokens.add(t)
|
||||
|
||||
all_tokens = extra_tokens + list(all_tokens)
|
||||
|
||||
token2id: Dict[str, int] = {token: i for i, token in enumerate(all_tokens)}
|
||||
return token2id
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
args = get_args()
|
||||
manifest_file = Path(args.manifest_file)
|
||||
out_file = Path(args.tokens)
|
||||
|
||||
token2id = get_token2id(manifest_file)
|
||||
write_mapping(out_file, token2id)
|
1
egs/vctk/TTS/local/prepare_token_file.py
Symbolic link
1
egs/vctk/TTS/local/prepare_token_file.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../ljspeech/TTS/local/prepare_token_file.py
|
@ -24,9 +24,9 @@ This file reads the texts in given manifest and save the new cuts with phoneme t
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import g2p_en
|
||||
import tacotron_cleaner.cleaners
|
||||
from lhotse import CutSet, load_manifest
|
||||
from piper_phonemize import phonemize_espeak
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
|
||||
@ -37,17 +37,20 @@ def prepare_tokens_vctk():
|
||||
partition = "all"
|
||||
|
||||
cut_set = load_manifest(output_dir / f"{prefix}_cuts_{partition}.{suffix}")
|
||||
g2p = g2p_en.G2p()
|
||||
|
||||
new_cuts = []
|
||||
for cut in tqdm(cut_set):
|
||||
# Each cut only contains one supervision
|
||||
assert len(cut.supervisions) == 1, len(cut.supervisions)
|
||||
assert len(cut.supervisions) == 1, (len(cut.supervisions), cut)
|
||||
text = cut.supervisions[0].text
|
||||
# Text normalization
|
||||
text = tacotron_cleaner.cleaners.custom_english_cleaners(text)
|
||||
# Convert to phonemes
|
||||
cut.tokens = g2p(text)
|
||||
tokens_list = phonemize_espeak(text, "en-us")
|
||||
tokens = []
|
||||
for t in tokens_list:
|
||||
tokens.extend(t)
|
||||
cut.tokens = tokens
|
||||
new_cuts.append(cut)
|
||||
|
||||
new_cut_set = CutSet.from_cuts(new_cuts)
|
||||
|
@ -78,6 +78,13 @@ fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "Stage 3: Prepare phoneme tokens for VCTK"
|
||||
# We assume you have installed piper_phonemize and espnet_tts_frontend.
|
||||
# If not, please install them with:
|
||||
# - piper_phonemize:
|
||||
# refer to https://github.com/rhasspy/piper-phonemize,
|
||||
# could install the pre-built wheels from https://github.com/csukuangfj/piper-phonemize/releases/tag/2023.12.5
|
||||
# - espnet_tts_frontend:
|
||||
# `pip install espnet_tts_frontend`, refer to https://github.com/espnet/espnet_tts_frontend/
|
||||
if [ ! -e data/spectrogram/.vctk_with_token.done ]; then
|
||||
./local/prepare_tokens_vctk.py
|
||||
mv data/spectrogram/vctk_cuts_with_tokens_all.jsonl.gz \
|
||||
@ -111,14 +118,15 @@ fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Generate token file"
|
||||
# We assume you have installed g2p_en and espnet_tts_frontend.
|
||||
# We assume you have installed piper_phonemize and espnet_tts_frontend.
|
||||
# If not, please install them with:
|
||||
# - g2p_en: `pip install g2p_en`, refer to https://github.com/Kyubyong/g2p
|
||||
# - espnet_tts_frontend, `pip install espnet_tts_frontend`, refer to https://github.com/espnet/espnet_tts_frontend/
|
||||
# - piper_phonemize:
|
||||
# refer to https://github.com/rhasspy/piper-phonemize,
|
||||
# could install the pre-built wheels from https://github.com/csukuangfj/piper-phonemize/releases/tag/2023.12.5
|
||||
# - espnet_tts_frontend:
|
||||
# `pip install espnet_tts_frontend`, refer to https://github.com/espnet/espnet_tts_frontend/
|
||||
if [ ! -e data/tokens.txt ]; then
|
||||
./local/prepare_token_file.py \
|
||||
--manifest-file data/spectrogram/vctk_cuts_train.jsonl.gz \
|
||||
--tokens data/tokens.txt
|
||||
./local/prepare_token_file.py --tokens data/tokens.txt
|
||||
fi
|
||||
fi
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2023 Xiaomi Corporation (Author: Zengwei Yao)
|
||||
# Copyright 2023-2024 Xiaomi Corporation (Author: Zengwei Yao,
|
||||
# Zengrui Jin,)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -97,7 +98,7 @@ def add_meta_data(filename: str, meta_data: Dict[str, str]):
|
||||
for key, value in meta_data.items():
|
||||
meta = model.metadata_props.add()
|
||||
meta.key = key
|
||||
meta.value = value
|
||||
meta.value = str(value)
|
||||
|
||||
onnx.save(model, filename)
|
||||
|
||||
@ -160,6 +161,7 @@ def export_model_onnx(
|
||||
model: nn.Module,
|
||||
model_filename: str,
|
||||
vocab_size: int,
|
||||
n_speakers: int,
|
||||
opset_version: int = 11,
|
||||
) -> None:
|
||||
"""Export the given generator model to ONNX format.
|
||||
@ -212,10 +214,15 @@ def export_model_onnx(
|
||||
)
|
||||
|
||||
meta_data = {
|
||||
"model_type": "VITS",
|
||||
"model_type": "vits",
|
||||
"version": "1",
|
||||
"model_author": "k2-fsa",
|
||||
"comment": "VITS generator",
|
||||
"comment": "icefall", # must be icefall for models from icefall
|
||||
"language": "English",
|
||||
"voice": "en-us", # Choose your language appropriately
|
||||
"has_espeak": 1,
|
||||
"n_speakers": n_speakers,
|
||||
"sample_rate": 22050, # Must match the real sample rate
|
||||
}
|
||||
logging.info(f"meta_data: {meta_data}")
|
||||
|
||||
@ -231,8 +238,7 @@ def main():
|
||||
params.update(vars(args))
|
||||
|
||||
tokenizer = Tokenizer(params.tokens)
|
||||
params.blank_id = tokenizer.blank_id
|
||||
params.oov_id = tokenizer.oov_id
|
||||
params.blank_id = tokenizer.pad_id
|
||||
params.vocab_size = tokenizer.vocab_size
|
||||
|
||||
with open(args.speakers) as f:
|
||||
@ -265,6 +271,7 @@ def main():
|
||||
model,
|
||||
model_filename,
|
||||
params.vocab_size,
|
||||
params.num_spks,
|
||||
opset_version=opset_version,
|
||||
)
|
||||
logging.info(f"Exported generator to {model_filename}")
|
||||
|
@ -135,14 +135,16 @@ def infer_dataset(
|
||||
batch_size = len(batch["tokens"])
|
||||
|
||||
tokens = batch["tokens"]
|
||||
tokens = tokenizer.tokens_to_token_ids(tokens)
|
||||
tokens = tokenizer.tokens_to_token_ids(
|
||||
tokens, intersperse_blank=True, add_sos=True, add_eos=True
|
||||
)
|
||||
tokens = k2.RaggedTensor(tokens)
|
||||
row_splits = tokens.shape.row_splits(1)
|
||||
tokens_lens = row_splits[1:] - row_splits[:-1]
|
||||
tokens = tokens.to(device)
|
||||
tokens_lens = tokens_lens.to(device)
|
||||
# tensor of shape (B, T)
|
||||
tokens = tokens.pad(mode="constant", padding_value=tokenizer.blank_id)
|
||||
tokens = tokens.pad(mode="constant", padding_value=tokenizer.pad_id)
|
||||
speakers = (
|
||||
torch.Tensor([speaker_map[sid] for sid in batch["speakers"]])
|
||||
.int()
|
||||
@ -214,8 +216,7 @@ def main():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
tokenizer = Tokenizer(params.tokens)
|
||||
params.blank_id = tokenizer.blank_id
|
||||
params.oov_id = tokenizer.oov_id
|
||||
params.blank_id = tokenizer.pad_id
|
||||
params.vocab_size = tokenizer.vocab_size
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
|
@ -1,6 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2023 Xiaomi Corporation (Author: Zengwei Yao)
|
||||
# Copyright 2023-2024 Xiaomi Corporation (Author: Zengwei Yao,
|
||||
# Zengrui Jin,)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -122,7 +123,9 @@ def main():
|
||||
model = OnnxModel(args.model_filename)
|
||||
|
||||
text = "I went there to see the land, the people and how their system works, end quote."
|
||||
tokens = tokenizer.texts_to_token_ids([text])
|
||||
tokens = tokenizer.texts_to_token_ids(
|
||||
[text], intersperse_blank=True, add_sos=True, add_eos=True
|
||||
)
|
||||
tokens = torch.tensor(tokens) # (1, T)
|
||||
tokens_lens = torch.tensor([tokens.shape[1]], dtype=torch.int64) # (1, T)
|
||||
speaker = torch.tensor([1], dtype=torch.int64) # (1, )
|
||||
|
@ -1,5 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Zengwei Yao)
|
||||
# Copyright 2023-2024 Xiaomi Corporation (Author: Zengwei Yao,
|
||||
# Zengrui Jin,)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -342,14 +343,16 @@ def prepare_input(
|
||||
torch.Tensor([speaker_map[sid] for sid in batch["speakers"]]).int().to(device)
|
||||
)
|
||||
|
||||
tokens = tokenizer.tokens_to_token_ids(tokens)
|
||||
tokens = tokenizer.tokens_to_token_ids(
|
||||
tokens, intersperse_blank=True, add_sos=True, add_eos=True
|
||||
)
|
||||
tokens = k2.RaggedTensor(tokens)
|
||||
row_splits = tokens.shape.row_splits(1)
|
||||
tokens_lens = row_splits[1:] - row_splits[:-1]
|
||||
tokens = tokens.to(device)
|
||||
tokens_lens = tokens_lens.to(device)
|
||||
# a tensor of shape (B, T)
|
||||
tokens = tokens.pad(mode="constant", padding_value=tokenizer.blank_id)
|
||||
tokens = tokens.pad(mode="constant", padding_value=tokenizer.pad_id)
|
||||
|
||||
return audio, audio_lens, features, features_lens, tokens, tokens_lens, speakers
|
||||
|
||||
@ -812,8 +815,7 @@ def run(rank, world_size, args):
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
tokenizer = Tokenizer(params.tokens)
|
||||
params.blank_id = tokenizer.blank_id
|
||||
params.oov_id = tokenizer.oov_id
|
||||
params.blank_id = tokenizer.pad_id
|
||||
params.vocab_size = tokenizer.vocab_size
|
||||
|
||||
vctk = VctkTtsDataModule(args)
|
||||
|
@ -1,6 +1,7 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# Copyright 2022-2023 Xiaomi Corporation (Authors: Mingshuang Luo,
|
||||
# Zengwei Yao)
|
||||
# Copyright 2022-2024 Xiaomi Corporation (Authors: Mingshuang Luo,
|
||||
# Zengwei Yao,
|
||||
# Zengrui Jin,)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
|
Loading…
x
Reference in New Issue
Block a user