icefall/egs/mgb2/ASR/RESULTS.md
Amir Hussein 6f71981667
MGB2 (#396)
* mgb2

* mgb2

* adding pruned transducer stateless to mgb2

* update display_manifest_statistics.py

* .

* stateless transducer MGB-2

* Update README.md

* Update RESULTS.md

* Update prepare_lang_bpe.py

* Update asr_datamodule.py

* .nfs removed

* Adding symlink

* .

* resolving conflicts

* Update .gitignore

* black formatting

* Update compile_hlg.py

* Update compute_fbank_musan.py

* Update convert_transcript_words_to_tokens.py

* Update download_lm.py

* Update generate_unique_lexicon.py

* adding simlinks

* fixing symbolic links
2022-12-02 10:58:34 +08:00

237 lines
5.7 KiB
Markdown

# Results
### MGB2 all data BPE training results (Stateless Pruned Transducer)
#### 2022-09-07
The WERs are
| | dev | test | comment |
|------------------------------------|------------|------------|------------------------------------------|
| greedy search | 15.52 | 15.28 | --epoch 18, --avg 5, --max-duration 200 |
| modified beam search | 13.88 | 13.7 | --epoch 18, --avg 5, --max-duration 200 |
| fast beam search | 14.62 | 14.36 | --epoch 18, --avg 5, --max-duration 200|
The training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./pruned_transducer_stateless5/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--exp-dir pruned_transducer_stateless5/exp \
--max-duration 300 \
--num-buckets 50
```
The tensorboard training log can be found at
https://tensorboard.dev/experiment/YyNv45pfQ0GqWzZ898WOlw/#scalars
The decoding command is:
```
epoch=18
avg=5
for method in greedy_search modified_beam_search fast_beam_search; do
./pruned_transducer_stateless5/decode.py \
--epoch $epoch \
--beam-size 10 \
--avg $avg \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 200 \
--decoding-method $method \
--max-sym-per-frame 1 \
--num-encoder-layers 12 \
--dim-feedforward 2048 \
--nhead 8 \
--encoder-dim 512 \
--decoder-dim 512 \
--joiner-dim 512 \
--use-averaged-model True
done
```
### MGB2 all data BPE training results (Conformer-CTC) (after 40 epochs)
#### 2022-06-04
You can find a pretrained model, training logs, decoding logs, and decoding results at:
https://huggingface.co/AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06
The best WER, as of 2022-06-04, for the MGB2 test dataset is below
Using whole lattice HLG decoding + n-gram LM rescoring
| | dev | test |
|-----|------------|------------|
| WER | 15.62 | 15.01 |
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
| ngram_lm_scale | attention_scale |
|----------------|-----------------|
| 0.1 | - |
Using n-best (n=0.5) attention decoder rescoring
| | dev | test |
|-----|------------|------------|
| WER | 15.89 | 15.08 |
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
| ngram_lm_scale | attention_scale |
|----------------|-----------------|
| 0.01 | 0.5 |
To reproduce the above result, use the following commands for training:
# Note: the model was trained on V-100 32GB GPU
```
cd egs/mgb2/ASR
. ./path.sh
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1"
./conformer_ctc/train.py \
--lang-dir data/lang_bpe_5000 \
--att-rate 0.8 \
--lr-factor 10 \
--max-duration \
--concatenate-cuts 0 \
--world-size 2 \
--bucketing-sampler 1 \
--max-duration 100 \
--start-epoch 0 \
--num-epochs 40
```
and the following command for nbest decoding
```
./conformer_ctc/decode.py \
--lang-dir data/lang_bpe_5000 \
--max-duration 30 \
--concatenate-cuts 0 \
--bucketing-sampler 1 \
--num-paths 1000 \
--epoch 40 \
--avg 5 \
--method attention-decoder \
--nbest-scale 0.5
```
and the following command for whole-lattice decoding
```
./conformer_ctc/decode.py \
--epoch 40 \
--avg 5 \
--exp-dir conformer_ctc/exp_5000_att0.8 \
--lang-dir data/lang_bpe_5000 \
--max-duration 30 \
--concatenate-cuts 0 \
--bucketing-sampler 1 \
--num-paths 1000 \
--method whole-lattice-rescoring
```
The tensorboard log for training is available at
https://tensorboard.dev/experiment/QYNzOi52RwOX8yvtpl3hMw/#scalars
### MGB2 100h BPE training results (Conformer-CTC) (after 33 epochs)
#### 2022-06-04
The best WER, as of 2022-06-04, for the MGB2 test dataset is below
Using whole lattice HLG decoding + n-gram LM rescoring
| | dev | test |
|-----|------------|------------|
| WER | 25.32 | 23.53 |
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
| ngram_lm_scale | attention_scale |
|----------------|-----------------|
| 0.1 | - |
Using n-best (n=0.5) HLG decoding + n-gram LM rescoring + attention decoder rescoring:
| | dev | test |
|-----|------------|------------|
| WER | 27.87 | 26.12 |
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
| ngram_lm_scale | attention_scale |
|----------------|-----------------|
| 0.01 | 0.3 |
To reproduce the above result, use the following commands for training:
# Note: the model was trained on V-100 32GB GPU
```
cd egs/mgb2/ASR
. ./path.sh
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1"
./conformer_ctc/train.py \
--lang-dir data/lang_bpe_5000 \
--att-rate 0.8 \
--lr-factor 10 \
--max-duration \
--concatenate-cuts 0 \
--world-size 2 \
--bucketing-sampler 1 \
--max-duration 100 \
--start-epoch 0 \
--num-epochs 40
```
and the following command for nbest decoding
```
./conformer_ctc/decode.py \
--lang-dir data/lang_bpe_5000 \
--max-duration 30 \
--concatenate-cuts 0 \
--bucketing-sampler 1 \
--num-paths 1000 \
--epoch 40 \
--avg 5 \
--method attention-decoder \
--nbest-scale 0.5
```
and the following command for whole-lattice decoding
```
./conformer_ctc/decode.py \
--lang-dir data/lang_bpe_5000 \
--max-duration 30 \
--concatenate-cuts 0 \
--bucketing-sampler 1 \
--num-paths 1000 \
--epoch 40 \
--avg 5 \
--method whole-lattice-rescoring
```
The tensorboard log for training is available at
<https://tensorboard.dev/experiment/zy6FnumCQlmiO7BPsdCmEg/#scalars>