mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
163 lines
4.7 KiB
Bash
Executable File
163 lines
4.7 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
|
|
|
set -eou pipefail
|
|
|
|
nj=15
|
|
stage=0
|
|
stop_stage=100
|
|
|
|
# Note: This script just prepare the minimal requirements that needed by a
|
|
# transducer training with bpe units.
|
|
#
|
|
# We assume dl_dir (download dir) contains the following
|
|
# directories and files.
|
|
# This script downloads only musan dataset automatically.
|
|
#
|
|
# - $dl_dir/KsponSpeech
|
|
# This script doesn't download KsponSpeech dataset automatically.
|
|
# For more details, please visit:
|
|
# Dataset: https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=123
|
|
# Paper: https://www.mdpi.com/2076-3417/10/19/6936
|
|
#
|
|
# - $dl_dir/musan
|
|
# This directory contains the following directories downloaded from
|
|
# http://www.openslr.org/17/
|
|
#
|
|
# - music
|
|
# - noise
|
|
# - speech
|
|
|
|
dl_dir=$PWD/download
|
|
|
|
# vocab size for sentence piece models.
|
|
# It will generate data/lang_bpe_xxx,
|
|
# data/lang_bpe_yyy if the array contains xxx, yyy
|
|
vocab_sizes=(
|
|
5000
|
|
)
|
|
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
data=$PWD/data
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
mkdir -p $data
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "Running prepare.sh"
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "Stage 0: Download MUSAN data"
|
|
# Befor you run this script, you must get the KsponSpeech dataset
|
|
# from https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=123
|
|
# If you have pre-downloaded it to /path/to/KsponSpeech,
|
|
# you can create a symlink
|
|
#
|
|
# ln -svf /path/to/KsponSpeech $dl_dir/KsponSpeech
|
|
#
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/musan $dl_dir/musan
|
|
#
|
|
if [ ! -d $dl_dir/musan ]; then
|
|
lhotse download musan $dl_dir
|
|
fi
|
|
fi
|
|
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Prepare KsponSpeech manifest"
|
|
# We assume that you have downloaded the KsponSpeech corpus
|
|
# to $dl_dir/KsponSpeech
|
|
mkdir -p $data/manifests
|
|
if [ ! -e $data/manifests/.ksponspeech.done ]; then
|
|
lhotse prepare ksponspeech -j $nj $dl_dir/KsponSpeech $data/manifests
|
|
touch $data/manifests/.ksponspeech.done
|
|
fi
|
|
fi
|
|
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to $dl_dir/musan
|
|
mkdir -p $data/manifests
|
|
if [ ! -e $data/manifests/.musan.done ]; then
|
|
lhotse prepare musan $dl_dir/musan $data/manifests
|
|
touch $data/manifests/.musan.done
|
|
fi
|
|
fi
|
|
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
log "Stage 3: Compute fbank for KsponSpeech"
|
|
mkdir -p $data/fbank
|
|
if [ ! -e $data/fbank/.ksponspeech.done ]; then
|
|
./local/compute_fbank_ksponspeech.py --data-dir $data
|
|
touch $data/fbank/.ksponspeech.done
|
|
fi
|
|
|
|
if [ ! -e $data/fbank/.ksponspeech-validated.done ]; then
|
|
log "Validating data/fbank for KsponSpeech"
|
|
parts=(
|
|
train
|
|
dev
|
|
eval_clean
|
|
eval_other
|
|
)
|
|
for part in ${parts[@]}; do
|
|
./local/validate_manifest.py \
|
|
$data/fbank/ksponspeech_cuts_${part}.jsonl.gz
|
|
done
|
|
touch $data/fbank/.ksponspeech-validated.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute fbank for musan"
|
|
mkdir -p $data/fbank
|
|
if [ ! -e $data/fbank/.musan.done ]; then
|
|
./local/compute_fbank_musan.py \
|
|
--src-dir $data/manifests \
|
|
--output-dir $data/fbank
|
|
touch $data/fbank/.musan.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "Stage 5: Prepare BPE based lang"
|
|
|
|
for vocab_size in ${vocab_sizes[@]}; do
|
|
lang_dir=$data/lang_bpe_${vocab_size}
|
|
mkdir -p $lang_dir
|
|
|
|
if [ ! -f $lang_dir/transcript_words.txt ]; then
|
|
log "Generate data for BPE training"
|
|
files=$(
|
|
find "$data/fbank" -name "ksponspeech_cuts_*.jsonl.gz"
|
|
)
|
|
gunzip -c ${files} | awk -F '"' '{print $30}' > $lang_dir/transcript_words.txt
|
|
fi
|
|
|
|
if [ ! -f $lang_dir/bpe.model ]; then
|
|
./local/train_bpe_model.py \
|
|
--lang-dir $lang_dir \
|
|
--vocab-size $vocab_size \
|
|
--transcript $lang_dir/transcript_words.txt
|
|
fi
|
|
done
|
|
fi
|