Add prepare.sh for KsponSpeech recipe. (#1656)

This commit is contained in:
Seung Hyun Lee 2024-06-18 17:54:39 +09:00 committed by GitHub
parent 1f5c0a87b9
commit 2e05663fbb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

162
egs/ksponspeech/ASR/prepare.sh Executable file
View File

@ -0,0 +1,162 @@
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=15
stage=0
stop_stage=100
# Note: This script just prepare the minimal requirements that needed by a
# transducer training with bpe units.
#
# We assume dl_dir (download dir) contains the following
# directories and files.
# This script downloads only musan dataset automatically.
#
# - $dl_dir/KsponSpeech
# This script doesn't download KsponSpeech dataset automatically.
# For more details, please visit:
# Dataset: https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=123
# Paper: https://www.mdpi.com/2076-3417/10/19/6936
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
5000
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
data=$PWD/data
. shared/parse_options.sh || exit 1
mkdir -p $data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "Running prepare.sh"
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download MUSAN data"
# Befor you run this script, you must get the KsponSpeech dataset
# from https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=123
# If you have pre-downloaded it to /path/to/KsponSpeech,
# you can create a symlink
#
# ln -svf /path/to/KsponSpeech $dl_dir/KsponSpeech
#
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/musan
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare KsponSpeech manifest"
# We assume that you have downloaded the KsponSpeech corpus
# to $dl_dir/KsponSpeech
mkdir -p $data/manifests
if [ ! -e $data/manifests/.ksponspeech.done ]; then
lhotse prepare ksponspeech -j $nj $dl_dir/KsponSpeech $data/manifests
touch $data/manifests/.ksponspeech.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to $dl_dir/musan
mkdir -p $data/manifests
if [ ! -e $data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan $data/manifests
touch $data/manifests/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank for KsponSpeech"
mkdir -p $data/fbank
if [ ! -e $data/fbank/.ksponspeech.done ]; then
./local/compute_fbank_ksponspeech.py --data-dir $data
touch $data/fbank/.ksponspeech.done
fi
if [ ! -e $data/fbank/.ksponspeech-validated.done ]; then
log "Validating data/fbank for KsponSpeech"
parts=(
train
dev
eval_clean
eval_other
)
for part in ${parts[@]}; do
./local/validate_manifest.py \
$data/fbank/ksponspeech_cuts_${part}.jsonl.gz
done
touch $data/fbank/.ksponspeech-validated.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p $data/fbank
if [ ! -e $data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py \
--src-dir $data/manifests \
--output-dir $data/fbank
touch $data/fbank/.musan.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=$data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for BPE training"
files=$(
find "$data/fbank" -name "ksponspeech_cuts_*.jsonl.gz"
)
gunzip -c ${files} | awk -F '"' '{print $30}' > $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
done
fi