mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* add whisper fbank for wenetspeech * add whisper fbank for other dataset * add str to bool * add decode for wenetspeech * add requirments.txt * add original model decode with 30s * test feature extractor speed * add aishell2 feat * change compute feature batch * fix overwrite * fix executor * regression * add kaldifeatwhisper fbank * fix io issue * parallel jobs * use multi machines * add wenetspeech fine-tune scripts * add monkey patch codes * remove useless file * fix subsampling factor * fix too long audios * add remove long short * fix whisper version to support multi batch beam * decode all wav files * remove utterance more than 30s in test_net * only test net * using soft links * add kespeech whisper feats * fix index error * add manifests for whisper * change to licomchunky writer * add missing option * decrease cpu usage * add speed perturb for kespeech * fix kespeech speed perturb * add dataset * load checkpoint from specific path * add speechio * add speechio results --------- Co-authored-by: zr_jin <peter.jin.cn@gmail.com>
167 lines
4.8 KiB
Bash
Executable File
167 lines
4.8 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
|
|
|
set -eou pipefail
|
|
|
|
stage=-1
|
|
stop_stage=7
|
|
perturb_speed=true
|
|
|
|
|
|
# We assume dl_dir (download dir) contains the following
|
|
# directories and files. If not, they will be downloaded
|
|
# by this script automatically.
|
|
#
|
|
# - $dl_dir/aishell4
|
|
# You can find four directories:train_S, train_M, train_L and test.
|
|
# You can download it from https://openslr.org/111/
|
|
#
|
|
# - $dl_dir/musan
|
|
# This directory contains the following directories downloaded from
|
|
# http://www.openslr.org/17/
|
|
#
|
|
# - music
|
|
# - noise
|
|
# - speech
|
|
|
|
dl_dir=$PWD/download
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
mkdir -p data
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "Stage 0: Download data"
|
|
|
|
# If you have pre-downloaded it to /path/to/aishell4,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/aishell4 $dl_dir/aishell4
|
|
#
|
|
if [ ! -f $dl_dir/aishell4/train_L ]; then
|
|
lhotse download aishell4 $dl_dir/aishell4
|
|
fi
|
|
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/musan $dl_dir/musan
|
|
#
|
|
if [ ! -d $dl_dir/musan ]; then
|
|
lhotse download musan $dl_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Prepare aishell4 manifest"
|
|
# We assume that you have downloaded the aishell4 corpus
|
|
# to $dl_dir/aishell4
|
|
if [ ! -f data/manifests/aishell4/.manifests.done ]; then
|
|
mkdir -p data/manifests/aishell4
|
|
lhotse prepare aishell4 $dl_dir/aishell4 data/manifests/aishell4
|
|
touch data/manifests/aishell4/.manifests.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Compute fbank for aishell4"
|
|
if [ ! -f data/fbank/aishell4/.fbank.done ]; then
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_aishell4.py --perturb-speed ${perturb_speed}
|
|
touch data/fbank/.fbank.done
|
|
fi
|
|
fi
|
|
|
|
whisper_mel_bins=80
|
|
if [ $stage -le 20 ] && [ $stop_stage -ge 20 ]; then
|
|
log "Stage 20: Compute whisper fbank for aishell4"
|
|
if [ ! -f data/fbank/aishell4/.fbank.done ]; then
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_aishell4.py --perturb-speed ${perturb_speed} --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
|
|
touch data/fbank/.fbank.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
log "Stage 3: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to data/musan
|
|
if [ ! -f data/manifests/.musan_manifests.done ]; then
|
|
log "It may take 6 minutes"
|
|
mkdir -p data/manifests
|
|
lhotse prepare musan $dl_dir/musan data/manifests
|
|
touch data/manifests/.musan_manifests.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute fbank for musan"
|
|
if [ ! -f data/fbank/.msuan.done ]; then
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_musan.py
|
|
touch data/fbank/.msuan.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "Stage 5: Prepare char based lang"
|
|
lang_char_dir=data/lang_char
|
|
mkdir -p $lang_char_dir
|
|
|
|
# Prepare text.
|
|
# Note: in Linux, you can install jq with the following command:
|
|
# wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
|
|
gunzip -c data/manifests/aishell4/aishell4_supervisions_train_S.jsonl.gz \
|
|
| jq ".text" | sed 's/"//g' \
|
|
| ./local/text2token.py -t "char" > $lang_char_dir/text_S
|
|
|
|
gunzip -c data/manifests/aishell4/aishell4_supervisions_train_M.jsonl.gz \
|
|
| jq ".text" | sed 's/"//g' \
|
|
| ./local/text2token.py -t "char" > $lang_char_dir/text_M
|
|
|
|
gunzip -c data/manifests/aishell4/aishell4_supervisions_train_L.jsonl.gz \
|
|
| jq ".text" | sed 's/"//g' \
|
|
| ./local/text2token.py -t "char" > $lang_char_dir/text_L
|
|
|
|
for r in text_S text_M text_L ; do
|
|
cat $lang_char_dir/$r >> $lang_char_dir/text_full
|
|
done
|
|
|
|
# Prepare text normalize
|
|
python ./local/text_normalize.py \
|
|
--input $lang_char_dir/text_full \
|
|
--output $lang_char_dir/text
|
|
|
|
# Prepare words segments
|
|
python ./local/text2segments.py \
|
|
--input $lang_char_dir/text \
|
|
--output $lang_char_dir/text_words_segmentation
|
|
|
|
cat $lang_char_dir/text_words_segmentation | sed "s/ /\n/g" \
|
|
| sort -u | sed "/^$/d" \
|
|
| uniq > $lang_char_dir/words_no_ids.txt
|
|
|
|
# Prepare words.txt
|
|
if [ ! -f $lang_char_dir/words.txt ]; then
|
|
./local/prepare_words.py \
|
|
--input-file $lang_char_dir/words_no_ids.txt \
|
|
--output-file $lang_char_dir/words.txt
|
|
fi
|
|
|
|
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
|
|
./local/prepare_char.py
|
|
fi
|
|
fi
|