#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail stage=-1 stop_stage=7 perturb_speed=true # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/aishell4 # You can find four directories:train_S, train_M, train_L and test. # You can download it from https://openslr.org/111/ # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/aishell4, # you can create a symlink # # ln -sfv /path/to/aishell4 $dl_dir/aishell4 # if [ ! -f $dl_dir/aishell4/train_L ]; then lhotse download aishell4 $dl_dir/aishell4 fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/musan # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare aishell4 manifest" # We assume that you have downloaded the aishell4 corpus # to $dl_dir/aishell4 if [ ! -f data/manifests/aishell4/.manifests.done ]; then mkdir -p data/manifests/aishell4 lhotse prepare aishell4 $dl_dir/aishell4 data/manifests/aishell4 touch data/manifests/aishell4/.manifests.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Compute fbank for aishell4" if [ ! -f data/fbank/aishell4/.fbank.done ]; then mkdir -p data/fbank ./local/compute_fbank_aishell4.py --perturb-speed ${perturb_speed} touch data/fbank/.fbank.done fi fi whisper_mel_bins=80 if [ $stage -le 20 ] && [ $stop_stage -ge 20 ]; then log "Stage 20: Compute whisper fbank for aishell4" if [ ! -f data/fbank/aishell4/.fbank.done ]; then mkdir -p data/fbank ./local/compute_fbank_aishell4.py --perturb-speed ${perturb_speed} --num-mel-bins ${whisper_mel_bins} --whisper-fbank true touch data/fbank/.fbank.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan if [ ! -f data/manifests/.musan_manifests.done ]; then log "It may take 6 minutes" mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests touch data/manifests/.musan_manifests.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" if [ ! -f data/fbank/.msuan.done ]; then mkdir -p data/fbank ./local/compute_fbank_musan.py touch data/fbank/.msuan.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare char based lang" lang_char_dir=data/lang_char mkdir -p $lang_char_dir # Prepare text. # Note: in Linux, you can install jq with the following command: # wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 gunzip -c data/manifests/aishell4/aishell4_supervisions_train_S.jsonl.gz \ | jq ".text" | sed 's/"//g' \ | ./local/text2token.py -t "char" > $lang_char_dir/text_S gunzip -c data/manifests/aishell4/aishell4_supervisions_train_M.jsonl.gz \ | jq ".text" | sed 's/"//g' \ | ./local/text2token.py -t "char" > $lang_char_dir/text_M gunzip -c data/manifests/aishell4/aishell4_supervisions_train_L.jsonl.gz \ | jq ".text" | sed 's/"//g' \ | ./local/text2token.py -t "char" > $lang_char_dir/text_L for r in text_S text_M text_L ; do cat $lang_char_dir/$r >> $lang_char_dir/text_full done # Prepare text normalize python ./local/text_normalize.py \ --input $lang_char_dir/text_full \ --output $lang_char_dir/text # Prepare words segments python ./local/text2segments.py \ --input $lang_char_dir/text \ --output $lang_char_dir/text_words_segmentation cat $lang_char_dir/text_words_segmentation | sed "s/ /\n/g" \ | sort -u | sed "/^$/d" \ | uniq > $lang_char_dir/words_no_ids.txt # Prepare words.txt if [ ! -f $lang_char_dir/words.txt ]; then ./local/prepare_words.py \ --input-file $lang_char_dir/words_no_ids.txt \ --output-file $lang_char_dir/words.txt fi if [ ! -f $lang_char_dir/L_disambig.pt ]; then ./local/prepare_char.py fi fi