mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* add whisper fbank for wenetspeech * add whisper fbank for other dataset * add str to bool * add decode for wenetspeech * add requirments.txt * add original model decode with 30s * test feature extractor speed * add aishell2 feat * change compute feature batch * fix overwrite * fix executor * regression * add kaldifeatwhisper fbank * fix io issue * parallel jobs * use multi machines * add wenetspeech fine-tune scripts * add monkey patch codes * remove useless file * fix subsampling factor * fix too long audios * add remove long short * fix whisper version to support multi batch beam * decode all wav files * remove utterance more than 30s in test_net * only test net * using soft links * add kespeech whisper feats * fix index error * add manifests for whisper * change to licomchunky writer * add missing option * decrease cpu usage * add speed perturb for kespeech * fix kespeech speed perturb * add dataset * load checkpoint from specific path * add speechio * add speechio results --------- Co-authored-by: zr_jin <peter.jin.cn@gmail.com>
197 lines
5.6 KiB
Bash
Executable File
197 lines
5.6 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
|
|
|
set -eou pipefail
|
|
|
|
nj=30
|
|
stage=0
|
|
stop_stage=7
|
|
perturb_speed=true
|
|
|
|
|
|
# We assume dl_dir (download dir) contains the following
|
|
# directories and files. If not, you need to apply aishell2 through
|
|
# their official website.
|
|
# https://www.aishelltech.com/aishell_2
|
|
#
|
|
# - $dl_dir/aishell2
|
|
#
|
|
#
|
|
# - $dl_dir/musan
|
|
# This directory contains the following directories downloaded from
|
|
# http://www.openslr.org/17/
|
|
#
|
|
# - music
|
|
# - noise
|
|
# - speech
|
|
|
|
dl_dir=$PWD/download
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
mkdir -p data
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "stage 0: Download data"
|
|
|
|
# If you have pre-downloaded it to /path/to/aishell2,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/aishell2 $dl_dir/aishell2
|
|
#
|
|
# The directory structure is
|
|
# aishell2/
|
|
# |-- AISHELL-2
|
|
# | |-- iOS
|
|
# |-- data
|
|
# |-- wav
|
|
# |-- trans.txt
|
|
# |-- dev
|
|
# |-- wav
|
|
# |-- trans.txt
|
|
# |-- test
|
|
# |-- wav
|
|
# |-- trans.txt
|
|
|
|
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/musan $dl_dir/musan
|
|
#
|
|
if [ ! -d $dl_dir/musan ]; then
|
|
lhotse download musan $dl_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Prepare aishell2 manifest"
|
|
# We assume that you have downloaded and unzip the aishell2 corpus
|
|
# to $dl_dir/aishell2
|
|
if [ ! -f data/manifests/.aishell2_manifests.done ]; then
|
|
mkdir -p data/manifests
|
|
lhotse prepare aishell2 $dl_dir/aishell2 data/manifests -j $nj
|
|
touch data/manifests/.aishell2_manifests.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to data/musan
|
|
if [ ! -f data/manifests/.musan_manifests.done ]; then
|
|
log "It may take 6 minutes"
|
|
mkdir -p data/manifests
|
|
lhotse prepare musan $dl_dir/musan data/manifests
|
|
touch data/manifests/.musan_manifests.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|
log "Stage 3: Compute fbank for aishell2"
|
|
if [ ! -f data/fbank/.aishell2.done ]; then
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_aishell2.py --perturb-speed ${perturb_speed}
|
|
touch data/fbank/.aishell2.done
|
|
fi
|
|
fi
|
|
|
|
whisper_mel_bins=80
|
|
if [ $stage -le 30 ] && [ $stop_stage -ge 30 ]; then
|
|
log "Stage 30: Compute whisper fbank for aishell2"
|
|
if [ ! -f data/fbank/.aishell2.whisper.done ]; then
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_aishell2.py --perturb-speed ${perturb_speed} --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
|
|
touch data/fbank/.aishell2.whisper.done
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute fbank for musan"
|
|
if [ ! -f data/fbank/.msuan.done ]; then
|
|
mkdir -p data/fbank
|
|
./local/compute_fbank_musan.py
|
|
touch data/fbank/.msuan.done
|
|
fi
|
|
fi
|
|
|
|
lang_char_dir=data/lang_char
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "Stage 5: Prepare char based lang"
|
|
mkdir -p $lang_char_dir
|
|
|
|
# Prepare text.
|
|
# Note: in Linux, you can install jq with the following command:
|
|
# 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
|
|
# 2. chmod +x ./jq
|
|
# 3. cp jq /usr/bin
|
|
if [ ! -f $lang_char_dir/text ]; then
|
|
gunzip -c data/manifests/aishell2_supervisions_train.jsonl.gz \
|
|
| jq '.text' | sed 's/"//g' \
|
|
| ./local/text2token.py -t "char" > $lang_char_dir/text
|
|
fi
|
|
|
|
# The implementation of chinese word segmentation for text,
|
|
# and it will take about 15 minutes.
|
|
# If you can't install paddle-tiny with python 3.8, please refer to
|
|
# https://github.com/fxsjy/jieba/issues/920
|
|
if [ ! -f $lang_char_dir/text_words_segmentation ]; then
|
|
python3 ./local/text2segments.py \
|
|
--input-file $lang_char_dir/text \
|
|
--output-file $lang_char_dir/text_words_segmentation
|
|
fi
|
|
|
|
cat $lang_char_dir/text_words_segmentation | sed 's/ /\n/g' \
|
|
| sort -u | sed '/^$/d' | uniq > $lang_char_dir/words_no_ids.txt
|
|
|
|
if [ ! -f $lang_char_dir/words.txt ]; then
|
|
python3 ./local/prepare_words.py \
|
|
--input-file $lang_char_dir/words_no_ids.txt \
|
|
--output-file $lang_char_dir/words.txt
|
|
fi
|
|
|
|
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
|
|
python3 ./local/prepare_char.py
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
log "Stage 6: Prepare G"
|
|
# We assume you have installed kaldilm, if not, please install
|
|
# it using: pip install kaldilm
|
|
|
|
if [ ! -f ${lang_char_dir}/3-gram.unpruned.arpa ]; then
|
|
./shared/make_kn_lm.py \
|
|
-ngram-order 3 \
|
|
-text $lang_char_dir/text_words_segmentation \
|
|
-lm $lang_char_dir/3-gram.unpruned.arpa
|
|
fi
|
|
|
|
mkdir -p data/lm
|
|
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
|
|
# It is used in building LG
|
|
python3 -m kaldilm \
|
|
--read-symbol-table="$lang_char_dir/words.txt" \
|
|
--disambig-symbol='#0' \
|
|
--max-order=3 \
|
|
$lang_char_dir/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|
log "Stage 7: Compile LG"
|
|
./local/compile_lg.py --lang-dir $lang_char_dir
|
|
fi
|