#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=30 stage=0 stop_stage=7 perturb_speed=true # We assume dl_dir (download dir) contains the following # directories and files. If not, you need to apply aishell2 through # their official website. # https://www.aishelltech.com/aishell_2 # # - $dl_dir/aishell2 # # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "stage 0: Download data" # If you have pre-downloaded it to /path/to/aishell2, # you can create a symlink # # ln -sfv /path/to/aishell2 $dl_dir/aishell2 # # The directory structure is # aishell2/ # |-- AISHELL-2 # | |-- iOS # |-- data # |-- wav # |-- trans.txt # |-- dev # |-- wav # |-- trans.txt # |-- test # |-- wav # |-- trans.txt # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/musan # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare aishell2 manifest" # We assume that you have downloaded and unzip the aishell2 corpus # to $dl_dir/aishell2 if [ ! -f data/manifests/.aishell2_manifests.done ]; then mkdir -p data/manifests lhotse prepare aishell2 $dl_dir/aishell2 data/manifests -j $nj touch data/manifests/.aishell2_manifests.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan if [ ! -f data/manifests/.musan_manifests.done ]; then log "It may take 6 minutes" mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests touch data/manifests/.musan_manifests.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for aishell2" if [ ! -f data/fbank/.aishell2.done ]; then mkdir -p data/fbank ./local/compute_fbank_aishell2.py --perturb-speed ${perturb_speed} touch data/fbank/.aishell2.done fi fi whisper_mel_bins=80 if [ $stage -le 30 ] && [ $stop_stage -ge 30 ]; then log "Stage 30: Compute whisper fbank for aishell2" if [ ! -f data/fbank/.aishell2.whisper.done ]; then mkdir -p data/fbank ./local/compute_fbank_aishell2.py --perturb-speed ${perturb_speed} --num-mel-bins ${whisper_mel_bins} --whisper-fbank true touch data/fbank/.aishell2.whisper.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" if [ ! -f data/fbank/.msuan.done ]; then mkdir -p data/fbank ./local/compute_fbank_musan.py touch data/fbank/.msuan.done fi fi lang_char_dir=data/lang_char if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare char based lang" mkdir -p $lang_char_dir # Prepare text. # Note: in Linux, you can install jq with the following command: # 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 # 2. chmod +x ./jq # 3. cp jq /usr/bin if [ ! -f $lang_char_dir/text ]; then gunzip -c data/manifests/aishell2_supervisions_train.jsonl.gz \ | jq '.text' | sed 's/"//g' \ | ./local/text2token.py -t "char" > $lang_char_dir/text fi # The implementation of chinese word segmentation for text, # and it will take about 15 minutes. # If you can't install paddle-tiny with python 3.8, please refer to # https://github.com/fxsjy/jieba/issues/920 if [ ! -f $lang_char_dir/text_words_segmentation ]; then python3 ./local/text2segments.py \ --input-file $lang_char_dir/text \ --output-file $lang_char_dir/text_words_segmentation fi cat $lang_char_dir/text_words_segmentation | sed 's/ /\n/g' \ | sort -u | sed '/^$/d' | uniq > $lang_char_dir/words_no_ids.txt if [ ! -f $lang_char_dir/words.txt ]; then python3 ./local/prepare_words.py \ --input-file $lang_char_dir/words_no_ids.txt \ --output-file $lang_char_dir/words.txt fi if [ ! -f $lang_char_dir/L_disambig.pt ]; then python3 ./local/prepare_char.py fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare G" # We assume you have installed kaldilm, if not, please install # it using: pip install kaldilm if [ ! -f ${lang_char_dir}/3-gram.unpruned.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 3 \ -text $lang_char_dir/text_words_segmentation \ -lm $lang_char_dir/3-gram.unpruned.arpa fi mkdir -p data/lm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building LG python3 -m kaldilm \ --read-symbol-table="$lang_char_dir/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $lang_char_dir/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Compile LG" ./local/compile_lg.py --lang-dir $lang_char_dir fi