icefall/egs/seame/ASR/prepare.sh
2024-04-05 09:58:02 -04:00

116 lines
3.1 KiB
Bash

#!/usr/bin/env bash
# Copyright 2024 Johns Hopkins University (Amir Hussein)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
set -eou pipefail
nj=20
stage=-1
stop_stage=6
# We assume dl_dir (download dir) contains the following
# directories and files.
#
# - $dl_dir/mgb2
#
# You can download the data from
#
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
#
dl_dir=download
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
4000
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage 0: Download data"
# Note: Download SEAME from https://catalog.ldc.upenn.edu/LDC2015S04
#
# downlaod the splits https://github.com/zengzp0912/SEAME-dev-set.git to $dl_dir
#
# If you have pre-downloaded it to /path/to/seame,
# you can create a symlink
#
# ln -sfv /path/to/seame $dl_dir/seame
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
fbank=data_seame/fbank
manifests=data_seame/manifests
mkdir -p $manifests
if [ $stage -le 0] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Prepare seame manifest"
# We assume that you have downloaded the corpus
# to $dl_dir/seame
lhotse prepare seame $dl_dir/seame $dl_dir/SEAME-dev-set data/manifests
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Compute fbank features"
mkdir -p ${fbank}
python local/compute_fbank_gpu_seame.py
gunzip -c $fbank/cuts_train.jsonl.gz | shuf | gzip -c > ${fbank}/cuts_train_shuf.jsonl.gz
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data_seame/lang_bpe_${vocab_size}
mkdir -p ${lang_dir}
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate text for BPE training from data_seame/fbank/cuts_train_shuf.jsonl.gz"
python local/prepare_transcripts.py --cut ${fbank}/cuts_train_shuf.jsonl.gz --langdir ${lang_dir}
fi
source data_seame/manifests/token.man.1
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt \
--predef-symbols "$bpe_nlsyms"
done
fi