#!/usr/bin/env bash # Copyright 2024 Johns Hopkins University (Amir Hussein) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) set -eou pipefail nj=20 stage=-1 stop_stage=6 # We assume dl_dir (download dir) contains the following # directories and files. # # - $dl_dir/mgb2 # # You can download the data from # # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech # dl_dir=download . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( 4000 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "Stage 0: Download data" # Note: Download SEAME from https://catalog.ldc.upenn.edu/LDC2015S04 # # downlaod the splits https://github.com/zengzp0912/SEAME-dev-set.git to $dl_dir # # If you have pre-downloaded it to /path/to/seame, # you can create a symlink # # ln -sfv /path/to/seame $dl_dir/seame # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi fbank=data_seame/fbank manifests=data_seame/manifests mkdir -p $manifests if [ $stage -le 0] && [ $stop_stage -ge 0 ]; then log "Stage 0: Prepare seame manifest" # We assume that you have downloaded the corpus # to $dl_dir/seame lhotse prepare seame $dl_dir/seame $dl_dir/SEAME-dev-set data/manifests fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank features" mkdir -p ${fbank} python local/compute_fbank_gpu_seame.py gunzip -c $fbank/cuts_train.jsonl.gz | shuf | gzip -c > ${fbank}/cuts_train_shuf.jsonl.gz fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data_seame/lang_bpe_${vocab_size} mkdir -p ${lang_dir} if [ ! -f $lang_dir/transcript_words.txt ]; then log "Generate text for BPE training from data_seame/fbank/cuts_train_shuf.jsonl.gz" python local/prepare_transcripts.py --cut ${fbank}/cuts_train_shuf.jsonl.gz --langdir ${lang_dir} fi source data_seame/manifests/token.man.1 ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript_words.txt \ --predef-symbols "$bpe_nlsyms" done fi