mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
361 lines
10 KiB
Python
361 lines
10 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
This script loads a checkpoint (`pretrained.pt`) and uses it to decode waves.
|
|
You can generate the checkpoint with the following command:
|
|
|
|
./zipformer/export_PromptASR.py \
|
|
--exp-dir ./zipformer/exp \
|
|
--tokens data/lang_bpe_500_fallback_coverage_0.99/tokens.txt \
|
|
--epoch 50 \
|
|
--avg 10
|
|
|
|
Utterance level context biasing:
|
|
|
|
./zipformer/pretrained.py \
|
|
--checkpoint ./zipformer/exp/pretrained.pt \
|
|
--tokens data/lang_bpe_500_fallback_coverage_0.99/tokens.txt \
|
|
--method modified_beam_search \
|
|
--use-pre-text True \
|
|
--content-prompt "bessy random words hello k2 ASR" \
|
|
--use-style-prompt True \
|
|
librispeech.flac
|
|
|
|
|
|
Word level context biasing:
|
|
|
|
./zipformer/pretrained.py \
|
|
--checkpoint ./zipformer/exp/pretrained.pt \
|
|
--tokens data/lang_bpe_500_fallback_coverage_0.99/tokens.txt \
|
|
--method modified_beam_search \
|
|
--use-pre-text True \
|
|
--content-prompt "The topic is about horses." \
|
|
--use-style-prompt True \
|
|
test.wav
|
|
|
|
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
import warnings
|
|
from typing import List
|
|
|
|
import k2
|
|
import kaldifeat
|
|
import sentencepiece as spm
|
|
import torch
|
|
import torchaudio
|
|
from beam_search import greedy_search_batch, modified_beam_search
|
|
from text_normalization import _apply_style_transform, train_text_normalization
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
from train_bert_encoder import (
|
|
_encode_texts_as_bytes_with_tokenizer,
|
|
add_model_arguments,
|
|
get_params,
|
|
get_tokenizer,
|
|
get_transducer_model,
|
|
)
|
|
|
|
from icefall.utils import make_pad_mask, num_tokens, str2bool
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--checkpoint",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the checkpoint. "
|
|
"The checkpoint is assumed to be saved by "
|
|
"icefall.checkpoint.save_checkpoint().",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bpe-model",
|
|
type=str,
|
|
default="data/lang_bpe_500_fallback_coverage_0.99/bpe.model",
|
|
help="""Path to tokens.txt.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--method",
|
|
type=str,
|
|
default="greedy_search",
|
|
help="""Possible values are:
|
|
- greedy_search
|
|
- modified_beam_search
|
|
- fast_beam_search
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"sound_files",
|
|
type=str,
|
|
nargs="+",
|
|
help="The input sound file(s) to transcribe. "
|
|
"Supported formats are those supported by torchaudio.load(). "
|
|
"For example, wav and flac are supported. "
|
|
"The sample rate has to be 16kHz.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--sample-rate",
|
|
type=int,
|
|
default=16000,
|
|
help="The sample rate of the input sound file",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--beam-size",
|
|
type=int,
|
|
default=4,
|
|
help="""An integer indicating how many candidates we will keep for each
|
|
frame. Used only when --method is beam_search or
|
|
modified_beam_search.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-sym-per-frame",
|
|
type=int,
|
|
default=1,
|
|
help="""Maximum number of symbols per frame. Used only when
|
|
--method is greedy_search.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-pre-text",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Use content prompt during decoding",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-style-prompt",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Use style prompt during decoding",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--pre-text-transform",
|
|
type=str,
|
|
choices=["mixed-punc", "upper-no-punc", "lower-no-punc", "lower-punc"],
|
|
default="mixed-punc",
|
|
help="The style of content prompt, i.e pre_text",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--style-text-transform",
|
|
type=str,
|
|
choices=["mixed-punc", "upper-no-punc", "lower-no-punc", "lower-punc"],
|
|
default="mixed-punc",
|
|
help="The style of style prompt, i.e style_text",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--content-prompt", type=str, default="", help="The content prompt for decoding"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--style-prompt",
|
|
type=str,
|
|
default="Mixed-cased English text with punctuations, feel free to change it.",
|
|
help="The style prompt for decoding",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def read_sound_files(
|
|
filenames: List[str], expected_sample_rate: float
|
|
) -> List[torch.Tensor]:
|
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
|
Args:
|
|
filenames:
|
|
A list of sound filenames.
|
|
expected_sample_rate:
|
|
The expected sample rate of the sound files.
|
|
Returns:
|
|
Return a list of 1-D float32 torch tensors.
|
|
"""
|
|
ans = []
|
|
for f in filenames:
|
|
wave, sample_rate = torchaudio.load(f)
|
|
assert (
|
|
sample_rate == expected_sample_rate
|
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
|
# We use only the first channel
|
|
ans.append(wave[0].contiguous())
|
|
return ans
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
|
|
params = get_params()
|
|
|
|
params.update(vars(args))
|
|
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(params.bpe_model)
|
|
|
|
# <blk> is defined in local/train_bpe_model.py
|
|
params.blank_id = sp.piece_to_id("<blk>")
|
|
params.unk_id = sp.piece_to_id("<unk>")
|
|
params.vocab_size = sp.get_piece_size()
|
|
|
|
logging.info(f"{params}")
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
if params.causal:
|
|
assert (
|
|
"," not in params.chunk_size
|
|
), "chunk_size should be one value in decoding."
|
|
assert (
|
|
"," not in params.left_context_frames
|
|
), "left_context_frames should be one value in decoding."
|
|
|
|
logging.info("Creating model")
|
|
model = get_transducer_model(params)
|
|
tokenizer = get_tokenizer(params) # for text encoder
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False)
|
|
model.load_state_dict(checkpoint["model"], strict=False)
|
|
model.to(device)
|
|
model.eval()
|
|
|
|
logging.info("Constructing Fbank computer")
|
|
opts = kaldifeat.FbankOptions()
|
|
opts.device = device
|
|
opts.frame_opts.dither = 0
|
|
opts.frame_opts.snip_edges = False
|
|
opts.frame_opts.samp_freq = params.sample_rate
|
|
opts.mel_opts.num_bins = params.feature_dim
|
|
opts.mel_opts.high_freq = -400
|
|
|
|
fbank = kaldifeat.Fbank(opts)
|
|
|
|
assert (
|
|
len(params.sound_files) == 1
|
|
), "Only support decoding one audio at this moment"
|
|
logging.info(f"Reading sound files: {params.sound_files}")
|
|
waves = read_sound_files(
|
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
|
)
|
|
waves = [w.to(device) for w in waves]
|
|
|
|
logging.info("Decoding started")
|
|
features = fbank(waves)
|
|
feature_lengths = [f.size(0) for f in features]
|
|
|
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
|
|
|
# encode prompts
|
|
if params.use_pre_text:
|
|
pre_text = [train_text_normalization(params.content_prompt)]
|
|
pre_text = _apply_style_transform(pre_text, params.pre_text_transform)
|
|
else:
|
|
pre_text = [""]
|
|
|
|
if params.use_style_prompt:
|
|
style_text = [params.style_prompt]
|
|
style_text = _apply_style_transform(style_text, params.style_text_transform)
|
|
else:
|
|
style_text = [""]
|
|
|
|
if params.use_pre_text or params.use_style_prompt:
|
|
encoded_inputs, style_lens = _encode_texts_as_bytes_with_tokenizer(
|
|
pre_texts=pre_text,
|
|
style_texts=style_text,
|
|
tokenizer=tokenizer,
|
|
device=device,
|
|
no_limit=True,
|
|
)
|
|
|
|
memory, memory_key_padding_mask = model.encode_text(
|
|
encoded_inputs=encoded_inputs,
|
|
style_lens=style_lens,
|
|
) # (T,B,C)
|
|
else:
|
|
memory = None
|
|
memory_key_padding_mask = None
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
encoder_out, encoder_out_lens = model.encode_audio(
|
|
feature=features,
|
|
feature_lens=feature_lengths,
|
|
memory=memory,
|
|
memory_key_padding_mask=memory_key_padding_mask,
|
|
)
|
|
|
|
hyps = []
|
|
msg = f"Using {params.method}"
|
|
logging.info(msg)
|
|
|
|
if params.method == "modified_beam_search":
|
|
hyp_tokens = modified_beam_search(
|
|
model=model,
|
|
encoder_out=encoder_out,
|
|
encoder_out_lens=encoder_out_lens,
|
|
beam=params.beam_size,
|
|
)
|
|
hyps.append(sp.decode(hyp_tokens)[0])
|
|
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
|
hyp_tokens = greedy_search_batch(
|
|
model=model,
|
|
encoder_out=encoder_out,
|
|
encoder_out_lens=encoder_out_lens,
|
|
)
|
|
hyps.append(sp.decode(hyp_tokens)[0])
|
|
else:
|
|
raise ValueError(f"Unsupported method: {params.method}")
|
|
|
|
s = "\n"
|
|
for filename, hyp in zip(params.sound_files, hyps):
|
|
s += f"{filename}:\n{hyp}\n\n"
|
|
logging.info(s)
|
|
|
|
logging.info("Decoding Done")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|