#!/usr/bin/env python3 # Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script loads a checkpoint (`pretrained.pt`) and uses it to decode waves. You can generate the checkpoint with the following command: ./zipformer/export_PromptASR.py \ --exp-dir ./zipformer/exp \ --tokens data/lang_bpe_500_fallback_coverage_0.99/tokens.txt \ --epoch 50 \ --avg 10 Utterance level context biasing: ./zipformer/pretrained.py \ --checkpoint ./zipformer/exp/pretrained.pt \ --tokens data/lang_bpe_500_fallback_coverage_0.99/tokens.txt \ --method modified_beam_search \ --use-pre-text True \ --content-prompt "bessy random words hello k2 ASR" \ --use-style-prompt True \ librispeech.flac Word level context biasing: ./zipformer/pretrained.py \ --checkpoint ./zipformer/exp/pretrained.pt \ --tokens data/lang_bpe_500_fallback_coverage_0.99/tokens.txt \ --method modified_beam_search \ --use-pre-text True \ --content-prompt "The topic is about horses." \ --use-style-prompt True \ test.wav """ import argparse import logging import math import warnings from typing import List import k2 import kaldifeat import sentencepiece as spm import torch import torchaudio from beam_search import greedy_search_batch, modified_beam_search from text_normalization import _apply_style_transform, train_text_normalization from torch.nn.utils.rnn import pad_sequence from train_bert_encoder import ( _encode_texts_as_bytes_with_tokenizer, add_model_arguments, get_params, get_tokenizer, get_transducer_model, ) from icefall.utils import make_pad_mask, num_tokens, str2bool def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--checkpoint", type=str, required=True, help="Path to the checkpoint. " "The checkpoint is assumed to be saved by " "icefall.checkpoint.save_checkpoint().", ) parser.add_argument( "--bpe-model", type=str, default="data/lang_bpe_500_fallback_coverage_0.99/bpe.model", help="""Path to tokens.txt.""", ) parser.add_argument( "--method", type=str, default="greedy_search", help="""Possible values are: - greedy_search - modified_beam_search - fast_beam_search """, ) parser.add_argument( "sound_files", type=str, nargs="+", help="The input sound file(s) to transcribe. " "Supported formats are those supported by torchaudio.load(). " "For example, wav and flac are supported. " "The sample rate has to be 16kHz.", ) parser.add_argument( "--sample-rate", type=int, default=16000, help="The sample rate of the input sound file", ) parser.add_argument( "--beam-size", type=int, default=4, help="""An integer indicating how many candidates we will keep for each frame. Used only when --method is beam_search or modified_beam_search.""", ) parser.add_argument( "--max-sym-per-frame", type=int, default=1, help="""Maximum number of symbols per frame. Used only when --method is greedy_search. """, ) parser.add_argument( "--use-pre-text", type=str2bool, default=True, help="Use content prompt during decoding", ) parser.add_argument( "--use-style-prompt", type=str2bool, default=True, help="Use style prompt during decoding", ) parser.add_argument( "--pre-text-transform", type=str, choices=["mixed-punc", "upper-no-punc", "lower-no-punc", "lower-punc"], default="mixed-punc", help="The style of content prompt, i.e pre_text", ) parser.add_argument( "--style-text-transform", type=str, choices=["mixed-punc", "upper-no-punc", "lower-no-punc", "lower-punc"], default="mixed-punc", help="The style of style prompt, i.e style_text", ) parser.add_argument( "--content-prompt", type=str, default="", help="The content prompt for decoding" ) parser.add_argument( "--style-prompt", type=str, default="Mixed-cased English text with punctuations, feel free to change it.", help="The style prompt for decoding", ) add_model_arguments(parser) return parser def read_sound_files( filenames: List[str], expected_sample_rate: float ) -> List[torch.Tensor]: """Read a list of sound files into a list 1-D float32 torch tensors. Args: filenames: A list of sound filenames. expected_sample_rate: The expected sample rate of the sound files. Returns: Return a list of 1-D float32 torch tensors. """ ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) assert ( sample_rate == expected_sample_rate ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0].contiguous()) return ans @torch.no_grad() def main(): parser = get_parser() args = parser.parse_args() params = get_params() params.update(vars(args)) sp = spm.SentencePieceProcessor() sp.load(params.bpe_model) # is defined in local/train_bpe_model.py params.blank_id = sp.piece_to_id("") params.unk_id = sp.piece_to_id("") params.vocab_size = sp.get_piece_size() logging.info(f"{params}") device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"device: {device}") if params.causal: assert ( "," not in params.chunk_size ), "chunk_size should be one value in decoding." assert ( "," not in params.left_context_frames ), "left_context_frames should be one value in decoding." logging.info("Creating model") model = get_transducer_model(params) tokenizer = get_tokenizer(params) # for text encoder num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") checkpoint = torch.load(args.checkpoint, map_location="cpu", weights_only=False) model.load_state_dict(checkpoint["model"], strict=False) model.to(device) model.eval() logging.info("Constructing Fbank computer") opts = kaldifeat.FbankOptions() opts.device = device opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = params.sample_rate opts.mel_opts.num_bins = params.feature_dim opts.mel_opts.high_freq = -400 fbank = kaldifeat.Fbank(opts) assert ( len(params.sound_files) == 1 ), "Only support decoding one audio at this moment" logging.info(f"Reading sound files: {params.sound_files}") waves = read_sound_files( filenames=params.sound_files, expected_sample_rate=params.sample_rate ) waves = [w.to(device) for w in waves] logging.info("Decoding started") features = fbank(waves) feature_lengths = [f.size(0) for f in features] features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10)) feature_lengths = torch.tensor(feature_lengths, device=device) # encode prompts if params.use_pre_text: pre_text = [train_text_normalization(params.content_prompt)] pre_text = _apply_style_transform(pre_text, params.pre_text_transform) else: pre_text = [""] if params.use_style_prompt: style_text = [params.style_prompt] style_text = _apply_style_transform(style_text, params.style_text_transform) else: style_text = [""] if params.use_pre_text or params.use_style_prompt: encoded_inputs, style_lens = _encode_texts_as_bytes_with_tokenizer( pre_texts=pre_text, style_texts=style_text, tokenizer=tokenizer, device=device, no_limit=True, ) memory, memory_key_padding_mask = model.encode_text( encoded_inputs=encoded_inputs, style_lens=style_lens, ) # (T,B,C) else: memory = None memory_key_padding_mask = None with warnings.catch_warnings(): warnings.simplefilter("ignore") encoder_out, encoder_out_lens = model.encode_audio( feature=features, feature_lens=feature_lengths, memory=memory, memory_key_padding_mask=memory_key_padding_mask, ) hyps = [] msg = f"Using {params.method}" logging.info(msg) if params.method == "modified_beam_search": hyp_tokens = modified_beam_search( model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam_size, ) hyps.append(sp.decode(hyp_tokens)[0]) elif params.method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, ) hyps.append(sp.decode(hyp_tokens)[0]) else: raise ValueError(f"Unsupported method: {params.method}") s = "\n" for filename, hyp in zip(params.sound_files, hyps): s += f"{filename}:\n{hyp}\n\n" logging.info(s) logging.info("Decoding Done") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()