mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
341 lines
10 KiB
Python
Executable File
341 lines
10 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2024 Xiaomi Corp. (authors: Wei Kang
|
|
# Han Zhu)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import json
|
|
import logging
|
|
import math
|
|
import os
|
|
from functools import partial
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from lhotse.utils import fix_random_seed
|
|
from scipy.io.wavfile import write
|
|
from train import add_model_arguments, get_model, get_params
|
|
from tts_datamodule import LJSpeechTtsDataModule
|
|
|
|
from icefall.checkpoint import (
|
|
average_checkpoints,
|
|
average_checkpoints_with_averaged_model,
|
|
find_checkpoints,
|
|
load_checkpoint,
|
|
)
|
|
from icefall.utils import AttributeDict, setup_logger, str2bool
|
|
|
|
LOG_EPS = math.log(1e-10)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--epoch",
|
|
type=int,
|
|
default=100,
|
|
help="""It specifies the checkpoint to use for decoding.
|
|
Note: Epoch counts from 1.
|
|
You can specify --avg to use more checkpoints for model averaging.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--iter",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --epoch is ignored and it
|
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
|
You can specify --avg to use more checkpoints for model averaging.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--avg",
|
|
type=int,
|
|
default=10,
|
|
help="Number of checkpoints to average. Automatically select "
|
|
"consecutive checkpoints before the checkpoint specified by "
|
|
"'--epoch' and '--iter'",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-averaged-model",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to load averaged model. Currently it only supports "
|
|
"using --epoch. If True, it would decode with the averaged model "
|
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
|
"Actually only the models with epoch number of `epoch-avg` and "
|
|
"`epoch` are loaded for averaging. ",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="flow_match/exp",
|
|
help="The experiment dir",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--generate-dir",
|
|
type=str,
|
|
default="generated_wavs",
|
|
help="Path name of the generated wavs",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def decode_one_batch(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
batch: dict,
|
|
):
|
|
"""
|
|
Args:
|
|
params:
|
|
It's the return value of :func:`get_params`.
|
|
model:
|
|
The text-to-feature neural model.
|
|
batch:
|
|
It is the return value from iterating
|
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
|
for the format of the `batch`.
|
|
Returns:
|
|
Return the decoding result. See above description for the format of
|
|
the returned dict.
|
|
"""
|
|
device = next(model.parameters()).device
|
|
|
|
cut_ids = [cut.id for cut in batch["cut"]]
|
|
|
|
features = batch["features"] # (B, T, F)
|
|
utt_durations = batch["features_lens"]
|
|
|
|
x = features.permute(0, 2, 1) # (B, F, T)
|
|
|
|
audios = model(x.to(device)) # (B, T)
|
|
|
|
wav_dir = f"{params.res_dir}/{params.suffix}"
|
|
os.makedirs(wav_dir, exist_ok=True)
|
|
|
|
for i in range(audios.shape[0]):
|
|
audio = audios[i][: (utt_durations[i] - 1) * 256 + 1024]
|
|
audio = audio.cpu().squeeze().numpy()
|
|
write(f"{wav_dir}/{cut_ids[i]}.wav", 22050, audio)
|
|
|
|
|
|
def decode_dataset(
|
|
dl: torch.utils.data.DataLoader,
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
test_set: str,
|
|
):
|
|
"""Decode dataset.
|
|
|
|
Args:
|
|
dl:
|
|
PyTorch's dataloader containing the dataset to decode.
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The text-to-feature neural model.
|
|
test_set:
|
|
The name of the test_set
|
|
"""
|
|
num_cuts = 0
|
|
|
|
try:
|
|
num_batches = len(dl)
|
|
except TypeError:
|
|
num_batches = "?"
|
|
|
|
with open(f"{params.res_dir}/{test_set}.scp", "w", encoding="utf8") as f:
|
|
for batch_idx, batch in enumerate(dl):
|
|
texts = batch["text"]
|
|
cut_ids = [cut.id for cut in batch["cut"]]
|
|
|
|
decode_one_batch(
|
|
params=params,
|
|
model=model,
|
|
batch=batch,
|
|
)
|
|
|
|
assert len(texts) == len(cut_ids), (len(texts), len(cut_ids))
|
|
|
|
for i in range(len(texts)):
|
|
f.write(f"{cut_ids[i]}\t{texts[i]}\n")
|
|
|
|
num_cuts += len(texts)
|
|
|
|
if batch_idx % 50 == 0:
|
|
batch_str = f"{batch_idx}/{num_batches}"
|
|
|
|
logging.info(
|
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
|
)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
LJSpeechTtsDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
params.res_dir = params.exp_dir / params.generate_dir
|
|
|
|
if params.iter > 0:
|
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
|
else:
|
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
|
|
|
if params.use_averaged_model:
|
|
params.suffix += "-use-averaged-model"
|
|
|
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
|
logging.info("Decoding started")
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
params.device = device
|
|
|
|
logging.info(f"Device: {device}")
|
|
|
|
logging.info(params)
|
|
fix_random_seed(666)
|
|
|
|
logging.info("About to create model")
|
|
model = get_model(params)
|
|
|
|
if not params.use_averaged_model:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
elif params.avg == 1:
|
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
|
else:
|
|
start = params.epoch - params.avg + 1
|
|
filenames = []
|
|
for i in range(start, params.epoch + 1):
|
|
if i >= 1:
|
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
|
logging.info(f"averaging {filenames}")
|
|
model.to(device)
|
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
|
else:
|
|
if params.iter > 0:
|
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
|
: params.avg + 1
|
|
]
|
|
if len(filenames) == 0:
|
|
raise ValueError(
|
|
f"No checkpoints found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
elif len(filenames) < params.avg + 1:
|
|
raise ValueError(
|
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
|
f" --iter {params.iter}, --avg {params.avg}"
|
|
)
|
|
filename_start = filenames[-1]
|
|
filename_end = filenames[0]
|
|
logging.info(
|
|
"Calculating the averaged model over iteration checkpoints"
|
|
f" from {filename_start} (excluded) to {filename_end}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
else:
|
|
assert params.avg > 0, params.avg
|
|
start = params.epoch - params.avg
|
|
assert start >= 1, start
|
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
|
logging.info(
|
|
f"Calculating the averaged model over epoch range from "
|
|
f"{start} (excluded) to {params.epoch}"
|
|
)
|
|
model.to(device)
|
|
model.load_state_dict(
|
|
average_checkpoints_with_averaged_model(
|
|
filename_start=filename_start,
|
|
filename_end=filename_end,
|
|
device=device,
|
|
)
|
|
)
|
|
|
|
model = model.to(device)
|
|
model.eval()
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
# we need cut ids to display recognition results.
|
|
args.return_cuts = True
|
|
ljspeech = LJSpeechTtsDataModule(args)
|
|
|
|
test_cuts = ljspeech.test_cuts()
|
|
|
|
test_dl = ljspeech.test_dataloaders(test_cuts)
|
|
|
|
test_sets = ["test"]
|
|
test_dls = [test_dl]
|
|
|
|
for test_set, test_dl in zip(test_sets, test_dls):
|
|
decode_dataset(
|
|
dl=test_dl,
|
|
params=params,
|
|
model=model,
|
|
test_set=test_set,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|