#!/usr/bin/env python3 # Copyright 2024 Xiaomi Corp. (authors: Wei Kang # Han Zhu) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import logging import math import os from functools import partial from pathlib import Path import torch import torch.nn as nn from lhotse.utils import fix_random_seed from scipy.io.wavfile import write from train import add_model_arguments, get_model, get_params from tts_datamodule import LJSpeechTtsDataModule from icefall.checkpoint import ( average_checkpoints, average_checkpoints_with_averaged_model, find_checkpoints, load_checkpoint, ) from icefall.utils import AttributeDict, setup_logger, str2bool LOG_EPS = math.log(1e-10) def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=100, help="""It specifies the checkpoint to use for decoding. Note: Epoch counts from 1. You can specify --avg to use more checkpoints for model averaging.""", ) parser.add_argument( "--iter", type=int, default=0, help="""If positive, --epoch is ignored and it will use the checkpoint exp_dir/checkpoint-iter.pt. You can specify --avg to use more checkpoints for model averaging. """, ) parser.add_argument( "--avg", type=int, default=10, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch' and '--iter'", ) parser.add_argument( "--use-averaged-model", type=str2bool, default=False, help="Whether to load averaged model. Currently it only supports " "using --epoch. If True, it would decode with the averaged model " "over the epoch range from `epoch-avg` (excluded) to `epoch`." "Actually only the models with epoch number of `epoch-avg` and " "`epoch` are loaded for averaging. ", ) parser.add_argument( "--exp-dir", type=str, default="flow_match/exp", help="The experiment dir", ) parser.add_argument( "--generate-dir", type=str, default="generated_wavs", help="Path name of the generated wavs", ) add_model_arguments(parser) return parser def decode_one_batch( params: AttributeDict, model: nn.Module, batch: dict, ): """ Args: params: It's the return value of :func:`get_params`. model: The text-to-feature neural model. batch: It is the return value from iterating `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation for the format of the `batch`. Returns: Return the decoding result. See above description for the format of the returned dict. """ device = next(model.parameters()).device cut_ids = [cut.id for cut in batch["cut"]] features = batch["features"] # (B, T, F) utt_durations = batch["features_lens"] x = features.permute(0, 2, 1) # (B, F, T) audios = model(x.to(device)) # (B, T) wav_dir = f"{params.res_dir}/{params.suffix}" os.makedirs(wav_dir, exist_ok=True) for i in range(audios.shape[0]): audio = audios[i][: (utt_durations[i] - 1) * 256 + 1024] audio = audio.cpu().squeeze().numpy() write(f"{wav_dir}/{cut_ids[i]}.wav", 22050, audio) def decode_dataset( dl: torch.utils.data.DataLoader, params: AttributeDict, model: nn.Module, test_set: str, ): """Decode dataset. Args: dl: PyTorch's dataloader containing the dataset to decode. params: It is returned by :func:`get_params`. model: The text-to-feature neural model. test_set: The name of the test_set """ num_cuts = 0 try: num_batches = len(dl) except TypeError: num_batches = "?" with open(f"{params.res_dir}/{test_set}.scp", "w", encoding="utf8") as f: for batch_idx, batch in enumerate(dl): texts = batch["text"] cut_ids = [cut.id for cut in batch["cut"]] decode_one_batch( params=params, model=model, batch=batch, ) assert len(texts) == len(cut_ids), (len(texts), len(cut_ids)) for i in range(len(texts)): f.write(f"{cut_ids[i]}\t{texts[i]}\n") num_cuts += len(texts) if batch_idx % 50 == 0: batch_str = f"{batch_idx}/{num_batches}" logging.info( f"batch {batch_str}, cuts processed until now is {num_cuts}" ) @torch.no_grad() def main(): parser = get_parser() LJSpeechTtsDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) params.res_dir = params.exp_dir / params.generate_dir if params.iter > 0: params.suffix = f"iter-{params.iter}-avg-{params.avg}" else: params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" if params.use_averaged_model: params.suffix += "-use-averaged-model" setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") logging.info("Decoding started") device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) params.device = device logging.info(f"Device: {device}") logging.info(params) fix_random_seed(666) logging.info("About to create model") model = get_model(params) if not params.use_averaged_model: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if i >= 1: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg + 1 ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg + 1: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) filename_start = filenames[-1] filename_end = filenames[0] logging.info( "Calculating the averaged model over iteration checkpoints" f" from {filename_start} (excluded) to {filename_end}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) else: assert params.avg > 0, params.avg start = params.epoch - params.avg assert start >= 1, start filename_start = f"{params.exp_dir}/epoch-{start}.pt" filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" logging.info( f"Calculating the averaged model over epoch range from " f"{start} (excluded) to {params.epoch}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) model = model.to(device) model.eval() num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") # we need cut ids to display recognition results. args.return_cuts = True ljspeech = LJSpeechTtsDataModule(args) test_cuts = ljspeech.test_cuts() test_dl = ljspeech.test_dataloaders(test_cuts) test_sets = ["test"] test_dls = [test_dl] for test_set, test_dl in zip(test_sets, test_dls): decode_dataset( dl=test_dl, params=params, model=model, test_set=test_set, ) logging.info("Done!") if __name__ == "__main__": main()