icefall/egs/baker_zh/TTS/README.md
2024-12-31 17:17:05 +08:00

147 lines
4.3 KiB
Markdown

# Introduction
It is for the dataset from
https://en.data-baker.com/datasets/freeDatasets/
The dataset contains 10000 Chinese sentences of a native Chinese female speaker,
which is about 12 hours.
**Note**: The dataset is for non-commercial use only.
# matcha
[./matcha](./matcha) contains the code for training [Matcha-TTS](https://github.com/shivammehta25/Matcha-TTS)
Checkpoints and training logs can be found [here](https://huggingface.co/csukuangfj/icefall-tts-baker-matcha-zh-2024-12-27).
The pull-request for this recipe can be found at <https://github.com/k2-fsa/icefall/pull/1849>
The training command is given below:
```bash
python3 ./matcha/train.py \
--exp-dir ./matcha/exp-1/ \
--num-workers 4 \
--world-size 1 \
--num-epochs 2000 \
--max-duration 1200 \
--bucketing-sampler 1 \
--start-epoch 1
```
To inference, use:
```bash
# Download Hifigan vocoder. We use Hifigan v2 below. You can select from v1, v2, or v3
wget https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v2
python3 ./matcha/infer.py \
--epoch 2000 \
--exp-dir ./matcha/exp-1 \
--vocoder ./generator_v2 \
--tokens ./data/tokens.txt \
--cmvn ./data/fbank/cmvn.json \
--input-text "当夜幕降临,星光点点,伴随着微风拂面,我在静谧中感受着时光的流转,思念如涟漪荡漾,梦境如画卷展开,我与自然融为一体,沉静在这片宁静的美丽之中,感受着生命的奇迹与温柔。" \
--output-wav ./generated.wav
```
```bash
soxi ./generated.wav
```
prints:
```
Input File : './generated.wav'
Channels : 1
Sample Rate : 22050
Precision : 16-bit
Duration : 00:00:17.31 = 381696 samples ~ 1298.29 CDDA sectors
File Size : 763k
Bit Rate : 353k
Sample Encoding: 16-bit Signed Integer PCM
```
https://github.com/user-attachments/assets/88d4e88f-ebc4-4f32-b216-16d46b966024
To export the checkpoint to onnx:
```bash
python3 ./matcha/export_onnx.py \
--exp-dir ./matcha/exp-1 \
--epoch 2000 \
--tokens ./data/tokens.txt \
--cmvn ./data/fbank/cmvn.json
```
The above command generates the following files:
```
-rw-r--r-- 1 kuangfangjun root 72M Dec 27 18:53 model-steps-2.onnx
-rw-r--r-- 1 kuangfangjun root 73M Dec 27 18:54 model-steps-3.onnx
-rw-r--r-- 1 kuangfangjun root 73M Dec 27 18:54 model-steps-4.onnx
-rw-r--r-- 1 kuangfangjun root 74M Dec 27 18:55 model-steps-5.onnx
-rw-r--r-- 1 kuangfangjun root 74M Dec 27 18:57 model-steps-6.onnx
```
where the 2 in `model-steps-2.onnx` means it uses 2 steps for the ODE solver.
**HINT**: If you get the following error while running `export_onnx.py`:
```
torch.onnx.errors.UnsupportedOperatorError: Exporting the operator
'aten::scaled_dot_product_attention' to ONNX opset version 14 is not supported.
```
please use `torch>=2.2.0`.
To export the Hifigan vocoder to onnx, please use:
```bash
wget https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v1
wget https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v2
wget https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v3
python3 ./matcha/export_onnx_hifigan.py
```
The above command generates 3 files:
- hifigan_v1.onnx
- hifigan_v2.onnx
- hifigan_v3.onnx
**HINT**: You can download pre-exported hifigan ONNX models from
<https://github.com/k2-fsa/sherpa-onnx/releases/tag/vocoder-models>
To use the generated onnx files to generate speech from text, please run:
```bash
# First, generate ./lexicon.txt
python3 ./matcha/generate_lexicon.py
python3 ./matcha/onnx_pretrained.py \
--acoustic-model ./model-steps-4.onnx \
--vocoder ./hifigan_v2.onnx \
--tokens ./data/tokens.txt \
--lexicon ./lexicon.txt \
--input-text "在一个阳光明媚的夏天,小马、小羊和小狗它们一块儿在广阔的草地上,嬉戏玩耍,这时小猴来了,还带着它心爱的足球活蹦乱跳地跑前、跑后教小马、小羊、小狗踢足球。" \
--output-wav ./1.wav
```
```bash
soxi ./1.wav
Input File : './1.wav'
Channels : 1
Sample Rate : 22050
Precision : 16-bit
Duration : 00:00:16.37 = 360960 samples ~ 1227.76 CDDA sectors
File Size : 722k
Bit Rate : 353k
Sample Encoding: 16-bit Signed Integer PCM
```
https://github.com/user-attachments/assets/578d04bb-fee8-47e5-9984-a868dcce610e