icefall/egs/swbd/ASR/RESULTS.md
2023-10-07 11:44:18 +08:00

114 lines
2.9 KiB
Markdown

## Results
### Switchboard BPE training results (Conformer-CTC)
#### 2023-09-04
The best WER, as of 2023-09-04, for the Switchboard is below
Results using attention decoder are given as:
| | eval2000-swbd | eval2000-callhome | eval2000-avg |
|--------------------------------|-----------------|---------------------|--------------|
| `conformer_ctc` | 9.48 | 17.73 | 13.67 |
Decoding results and models can be found here:
https://huggingface.co/zrjin/icefall-asr-swbd-conformer-ctc-2023-8-26
#### 2023-06-27
The best WER, as of 2023-06-27, for the Switchboard is below
Results using HLG decoding + n-gram LM rescoring + attention decoder rescoring:
| | eval2000 | rt03 |
|--------------------------------|------------|--------|
| `conformer_ctc` | 30.80 | 32.29 |
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
##### eval2000
| ngram_lm_scale | attention_scale |
|----------------|-----------------|
| 0.9 | 1.1 |
##### rt03
| ngram_lm_scale | attention_scale |
|----------------|-----------------|
| 0.9 | 1.9 |
To reproduce the above result, use the following commands for training:
```bash
cd egs/swbd/ASR
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1"
./conformer_ctc/train.py \
--max-duration 120 \
--num-workers 8 \
--enable-musan False \
--world-size 2 \
--num-epochs 100
```
and the following command for decoding:
```bash
./conformer_ctc/decode.py \
--epoch 99 \
--avg 10 \
--max-duration 50
```
#### 2023-06-26
The best WER, as of 2023-06-26, for the Switchboard is below
Results using HLG decoding + n-gram LM rescoring + attention decoder rescoring:
| | eval2000 | rt03 |
|--------------------------------|------------|--------|
| `conformer_ctc` | 33.37 | 35.06 |
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
##### eval2000
| ngram_lm_scale | attention_scale |
|----------------|-----------------|
| 0.3 | 2.5 |
##### rt03
| ngram_lm_scale | attention_scale |
|----------------|-----------------|
| 0.7 | 1.3 |
To reproduce the above result, use the following commands for training:
```bash
cd egs/swbd/ASR
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1"
./conformer_ctc/train.py \
--max-duration 120 \
--num-workers 8 \
--enable-musan False \
--world-size 2 \
```
and the following command for decoding:
```bash
./conformer_ctc/decode.py \
--epoch 55 \
--avg 1 \
--max-duration 50
```
For your reference, the nbest oracle WERs are:
| | eval2000 | rt03 |
|--------------------------------|------------|--------|
| `conformer_ctc` | 25.64 | 26.84 |