mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-11 11:02:29 +00:00
92 lines
2.7 KiB
Python
92 lines
2.7 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2022 The University of Electro-Communications (Author: Teo Wen Shen) # noqa
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
from lhotse import CutSet
|
|
from tqdm import tqdm
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser(
|
|
description="Generate transcripts for BPE training from MLS English dataset",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dataset-path",
|
|
type=str,
|
|
default="parler-tts/mls_eng",
|
|
help="Path to HuggingFace MLS English dataset (name or local path)",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lang-dir",
|
|
type=Path,
|
|
default=Path("data/lang"),
|
|
help="Directory to store output transcripts",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--split",
|
|
type=str,
|
|
default="train",
|
|
help="Dataset split to use for generating transcripts (train/dev/test)",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def generate_transcript_from_cuts(cuts: CutSet, output_file: Path) -> None:
|
|
"""Generate transcript text file from Lhotse CutSet."""
|
|
with open(output_file, "w") as f:
|
|
for cut in tqdm(cuts, desc="Processing cuts"):
|
|
for sup in cut.supervisions:
|
|
f.write(f"{sup.text}\n")
|
|
|
|
|
|
def main():
|
|
args = get_args()
|
|
logging.basicConfig(
|
|
format="%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s",
|
|
level=logging.INFO,
|
|
)
|
|
|
|
args.lang_dir.mkdir(parents=True, exist_ok=True)
|
|
output_file = args.lang_dir / "transcript.txt"
|
|
|
|
logging.info(f"Loading {args.split} split from dataset: {args.dataset_path}")
|
|
try:
|
|
cuts = CutSet.from_huggingface_dataset(
|
|
args.dataset_path, split=args.split, text_key="transcript"
|
|
)
|
|
except Exception as e:
|
|
logging.error(f"Failed to load dataset: {e}")
|
|
raise
|
|
|
|
logging.info(f"Generating transcript to {output_file}")
|
|
generate_transcript_from_cuts(cuts, output_file)
|
|
logging.info("Transcript generation completed")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|