mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-05 15:14:18 +00:00
3.6 KiB
3.6 KiB
Results
WenetSpeech char-based training results (Pruned Transducer 2)
2022-05-06
Using the codes from this PR https://github.com/k2-fsa/icefall/pull/349 and the Lhotse v1.1.
When training with the L subset, the WERs are
dev | test-net | test-meeting | comment | |
---|---|---|---|---|
greedy search | 8.06 | 9.16 | 14.07 | --epoch 6, --avg 3, --max-duration 100 |
modified beam search (beam size 4) | 7.97 | 9.18 | 13.91 | --epoch 6, --avg 3, --max-duration 100 |
fast beam search (set as default) | 8.13 | 9.12 | 14.33 | --epoch 6, --avg 3, --max-duration 1500 |
The training command for reproducing is given below:
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./pruned_transducer_stateless2/train.py \
--lang-dir data/lang_char \
--exp-dir pruned_transducer_stateless2/exp \
--world-size 8 \
--num-epochs 10 \
--start-epoch 0 \
--max-duration 180 \
--valid-interval 3000 \
--model-warm-step 3000 \
--save-every-n 8000 \
--training-subset L
The tensorboard training log can be found at https://tensorboard.dev/experiment/VpA8b7SZQ7CEjZs9WZ5HNA/#scalars
The decoding command is:
epoch=6
avg=3
## greedy search
./pruned_transducer_stateless2/decode.py \
--epoch 6 \
--avg 3 \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 100 \
--decoding-method greedy_search
## modified beam search
./pruned_transducer_stateless2/decode.py \
--epoch 6 \
--avg 3 \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
## fast beam search
./pruned_transducer_stateless2/decode.py \
--epoch 6 \
--avg 3 \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
When training with the M subset, the WERs are
dev | test-net | test-meeting | comment | |
---|---|---|---|---|
greedy search | 10.40 | 11.31 | 19.64 | --epoch 29, --avg 11, --max-duration 100 |
modified beam search (beam size 4) | 9.85 | 11.04 | 18.20 | --epoch 29, --avg 11, --max-duration 100 |
fast beam search (set as default) | 10.18 | 11.10 | 19.32 | --epoch 29, --avg 11, --max-duration 1500 |
When training with the S subset, the WERs are
dev | test-net | test-meeting | comment | |
---|---|---|---|---|
greedy search | 19.92 | 25.20 | 35.35 | --epoch 29, --avg 24, --max-duration 100 |
modified beam search (beam size 4) | 18.62 | 23.88 | 33.80 | --epoch 29, --avg 24, --max-duration 100 |
fast beam search (set as default) | 19.31 | 24.41 | 34.87 | --epoch 29, --avg 24, --max-duration 1500 |
A pre-trained model and decoding logs can be found at https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2