JinZr c236757674 * added script for inference
* minor updates
2024-09-07 23:33:52 +08:00

301 lines
9.4 KiB
Python
Executable File

#!/usr/bin/env python3
#
# Copyright 2024 The Chinese University of HK (Author: Zengrui Jin)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script performs model inference on test set.
Usage:
./vits/infer.py \
--epoch 1000 \
--exp-dir ./vits/exp \
--max-duration 500
"""
import argparse
import logging
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from typing import Dict, List
import torch
import torch.nn.functional as F
import torchaudio
from codec_datamodule import LibriTTSCodecDataModule
from torch import nn
from train import get_model, get_params
from icefall.checkpoint import load_checkpoint
from icefall.utils import AttributeDict, setup_logger
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=1000,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
""",
)
parser.add_argument(
"--exp-dir",
type=str,
default="encodec/exp",
help="The experiment dir",
)
parser.add_argument(
"--target-bw",
type=float,
default=7.5,
help="The target bandwidth for the generator",
)
return parser
# implementation from https://github.com/yangdongchao/AcademiCodec/blob/master/academicodec/models/encodec/test.py
def remove_encodec_weight_norm(model) -> None:
from modules import SConv1d
from modules.seanet import SConvTranspose1d, SEANetResnetBlock
from torch.nn.utils import remove_weight_norm
encoder = model.encoder.model
for key in encoder._modules:
if isinstance(encoder._modules[key], SEANetResnetBlock):
remove_weight_norm(encoder._modules[key].shortcut.conv.conv)
block_modules = encoder._modules[key].block._modules
for skey in block_modules:
if isinstance(block_modules[skey], SConv1d):
remove_weight_norm(block_modules[skey].conv.conv)
elif isinstance(encoder._modules[key], SConv1d):
remove_weight_norm(encoder._modules[key].conv.conv)
decoder = model.decoder.model
for key in decoder._modules:
if isinstance(decoder._modules[key], SEANetResnetBlock):
remove_weight_norm(decoder._modules[key].shortcut.conv.conv)
block_modules = decoder._modules[key].block._modules
for skey in block_modules:
if isinstance(block_modules[skey], SConv1d):
remove_weight_norm(block_modules[skey].conv.conv)
elif isinstance(decoder._modules[key], SConvTranspose1d):
remove_weight_norm(decoder._modules[key].convtr.convtr)
elif isinstance(decoder._modules[key], SConv1d):
remove_weight_norm(decoder._modules[key].conv.conv)
def infer_dataset(
dl: torch.utils.data.DataLoader,
subset: str,
params: AttributeDict,
model: nn.Module,
) -> None:
"""Decode dataset.
The ground-truth and generated audio pairs will be saved to `params.save_wav_dir`.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
subset:
The name of the subset.
params:
It is returned by :func:`get_params`.
model:
The neural model.
"""
# Background worker save audios to disk.
def _save_worker(
subset: str,
batch_size: int,
cut_ids: List[str],
audio: torch.Tensor,
audio_pred: torch.Tensor,
audio_lens: List[int],
):
for i in range(batch_size):
torchaudio.save(
str(params.save_wav_dir / subset / f"{cut_ids[i]}_gt.wav"),
audio[i : i + 1, : audio_lens[i]],
sample_rate=params.sampling_rate,
)
torchaudio.save(
str(params.save_wav_dir / subset / f"{cut_ids[i]}_recon.wav"),
audio_pred[i : i + 1, : audio_lens[i]],
sample_rate=params.sampling_rate,
)
device = next(model.parameters()).device
num_cuts = 0
log_interval = 5
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
futures = []
with ThreadPoolExecutor(max_workers=1) as executor:
for batch_idx, batch in enumerate(dl):
batch_size = len(batch["audio"])
audios = batch["audio"]
audio_lens = batch["audio_lens"].tolist()
cut_ids = [cut.id for cut in batch["cut"]]
codes, audio_hats = model.inference(
audios.to(device), target_bw=params.target_bw
)
audio_hats = audio_hats.squeeze(1).cpu()
futures.append(
executor.submit(
_save_worker,
subset,
batch_size,
cut_ids,
audios,
audio_hats,
audio_lens,
)
)
num_cuts += batch_size
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(
f"batch {batch_str}, cuts processed until now is {num_cuts}"
)
# return results
for f in futures:
f.result()
@torch.no_grad()
def main():
parser = get_parser()
LibriTTSCodecDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
params.suffix = f"epoch-{params.epoch}"
params.res_dir = params.exp_dir / "infer" / params.suffix
params.save_wav_dir = params.res_dir / "wav"
params.save_wav_dir.mkdir(parents=True, exist_ok=True)
setup_logger(f"{params.res_dir}/log-infer-{params.suffix}")
logging.info("Infer started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
# we need cut ids to display results of both constructed and ground-truth audio
args.return_cuts = True
libritts = LibriTTSCodecDataModule(args)
logging.info(f"Device: {device}")
logging.info(params)
logging.info("About to create model")
model = get_model(params)
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
remove_encodec_weight_norm(model)
model.to(device)
model.eval()
encoder = model.encoder
decoder = model.decoder
quantizer = model.quantizer
multi_scale_discriminator = model.multi_scale_discriminator
multi_period_discriminator = model.multi_period_discriminator
multi_scale_stft_discriminator = model.multi_scale_stft_discriminator
num_param_e = sum([p.numel() for p in encoder.parameters()])
logging.info(f"Number of parameters in encoder: {num_param_e}")
num_param_d = sum([p.numel() for p in decoder.parameters()])
logging.info(f"Number of parameters in decoder: {num_param_d}")
num_param_q = sum([p.numel() for p in quantizer.parameters()])
logging.info(f"Number of parameters in quantizer: {num_param_q}")
num_param_ds = sum([p.numel() for p in multi_scale_discriminator.parameters()])
logging.info(f"Number of parameters in multi_scale_discriminator: {num_param_ds}")
num_param_dp = sum([p.numel() for p in multi_period_discriminator.parameters()])
logging.info(f"Number of parameters in multi_period_discriminator: {num_param_dp}")
num_param_dstft = sum(
[p.numel() for p in multi_scale_stft_discriminator.parameters()]
)
logging.info(
f"Number of parameters in multi_scale_stft_discriminator: {num_param_dstft}"
)
logging.info(
f"Total number of parameters: {num_param_e + num_param_d + num_param_q + num_param_ds + num_param_dp + num_param_dstft}"
)
test_clean_cuts = libritts.test_clean_cuts()
test_clean = libritts.test_dataloaders(test_clean_cuts)
test_other_cuts = libritts.test_other_cuts()
test_other = libritts.test_dataloaders(test_other_cuts)
dev_clean_cuts = libritts.dev_clean_cuts()
dev_clean = libritts.valid_dataloaders(dev_clean_cuts)
dev_other_cuts = libritts.dev_other_cuts()
dev_other = libritts.valid_dataloaders(dev_other_cuts)
infer_sets = {
"test-clean": test_clean,
"test-other": test_other,
"dev-clean": dev_clean,
"dev-other": dev_other,
}
for subset, dl in infer_sets.items():
save_wav_dir = params.res_dir / "wav" / subset
save_wav_dir.mkdir(parents=True, exist_ok=True)
logging.info(f"Processing {subset} set, saving to {save_wav_dir}")
infer_dataset(
dl=dl,
subset=subset,
params=params,
model=model,
)
logging.info(f"Wav files are saved to {params.save_wav_dir}")
logging.info("Done!")
if __name__ == "__main__":
main()