mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
* added script for inference
* minor updates
This commit is contained in:
parent
12c7a16a5a
commit
c236757674
@ -267,13 +267,13 @@ class Encodec(nn.Module):
|
||||
|
||||
def decode(self, codes):
|
||||
quantized = self.quantizer.decode(codes)
|
||||
o = self.decoder(quantized)
|
||||
return o
|
||||
x_hat = self.decoder(quantized)
|
||||
return x_hat
|
||||
|
||||
def inference(self, x, target_bw=None, st=None):
|
||||
# setup
|
||||
x = x.unsqueeze(1)
|
||||
|
||||
codes = self.encode(x, target_bw, st)
|
||||
o = self.decode(codes)
|
||||
return o
|
||||
x_hat = self.decode(codes)
|
||||
return codes, x_hat
|
||||
|
300
egs/libritts/CODEC/encodec/infer.py
Executable file
300
egs/libritts/CODEC/encodec/infer.py
Executable file
@ -0,0 +1,300 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2024 The Chinese University of HK (Author: Zengrui Jin)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This script performs model inference on test set.
|
||||
|
||||
Usage:
|
||||
./vits/infer.py \
|
||||
--epoch 1000 \
|
||||
--exp-dir ./vits/exp \
|
||||
--max-duration 500
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
from codec_datamodule import LibriTTSCodecDataModule
|
||||
from torch import nn
|
||||
from train import get_model, get_params
|
||||
|
||||
from icefall.checkpoint import load_checkpoint
|
||||
from icefall.utils import AttributeDict, setup_logger
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="encodec/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--target-bw",
|
||||
type=float,
|
||||
default=7.5,
|
||||
help="The target bandwidth for the generator",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
# implementation from https://github.com/yangdongchao/AcademiCodec/blob/master/academicodec/models/encodec/test.py
|
||||
def remove_encodec_weight_norm(model) -> None:
|
||||
from modules import SConv1d
|
||||
from modules.seanet import SConvTranspose1d, SEANetResnetBlock
|
||||
from torch.nn.utils import remove_weight_norm
|
||||
|
||||
encoder = model.encoder.model
|
||||
for key in encoder._modules:
|
||||
if isinstance(encoder._modules[key], SEANetResnetBlock):
|
||||
remove_weight_norm(encoder._modules[key].shortcut.conv.conv)
|
||||
block_modules = encoder._modules[key].block._modules
|
||||
for skey in block_modules:
|
||||
if isinstance(block_modules[skey], SConv1d):
|
||||
remove_weight_norm(block_modules[skey].conv.conv)
|
||||
elif isinstance(encoder._modules[key], SConv1d):
|
||||
remove_weight_norm(encoder._modules[key].conv.conv)
|
||||
|
||||
decoder = model.decoder.model
|
||||
for key in decoder._modules:
|
||||
if isinstance(decoder._modules[key], SEANetResnetBlock):
|
||||
remove_weight_norm(decoder._modules[key].shortcut.conv.conv)
|
||||
block_modules = decoder._modules[key].block._modules
|
||||
for skey in block_modules:
|
||||
if isinstance(block_modules[skey], SConv1d):
|
||||
remove_weight_norm(block_modules[skey].conv.conv)
|
||||
elif isinstance(decoder._modules[key], SConvTranspose1d):
|
||||
remove_weight_norm(decoder._modules[key].convtr.convtr)
|
||||
elif isinstance(decoder._modules[key], SConv1d):
|
||||
remove_weight_norm(decoder._modules[key].conv.conv)
|
||||
|
||||
|
||||
def infer_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
subset: str,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
) -> None:
|
||||
"""Decode dataset.
|
||||
The ground-truth and generated audio pairs will be saved to `params.save_wav_dir`.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
subset:
|
||||
The name of the subset.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
"""
|
||||
|
||||
# Background worker save audios to disk.
|
||||
def _save_worker(
|
||||
subset: str,
|
||||
batch_size: int,
|
||||
cut_ids: List[str],
|
||||
audio: torch.Tensor,
|
||||
audio_pred: torch.Tensor,
|
||||
audio_lens: List[int],
|
||||
):
|
||||
for i in range(batch_size):
|
||||
torchaudio.save(
|
||||
str(params.save_wav_dir / subset / f"{cut_ids[i]}_gt.wav"),
|
||||
audio[i : i + 1, : audio_lens[i]],
|
||||
sample_rate=params.sampling_rate,
|
||||
)
|
||||
torchaudio.save(
|
||||
str(params.save_wav_dir / subset / f"{cut_ids[i]}_recon.wav"),
|
||||
audio_pred[i : i + 1, : audio_lens[i]],
|
||||
sample_rate=params.sampling_rate,
|
||||
)
|
||||
|
||||
device = next(model.parameters()).device
|
||||
num_cuts = 0
|
||||
log_interval = 5
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
futures = []
|
||||
with ThreadPoolExecutor(max_workers=1) as executor:
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
batch_size = len(batch["audio"])
|
||||
|
||||
audios = batch["audio"]
|
||||
audio_lens = batch["audio_lens"].tolist()
|
||||
cut_ids = [cut.id for cut in batch["cut"]]
|
||||
|
||||
codes, audio_hats = model.inference(
|
||||
audios.to(device), target_bw=params.target_bw
|
||||
)
|
||||
audio_hats = audio_hats.squeeze(1).cpu()
|
||||
|
||||
futures.append(
|
||||
executor.submit(
|
||||
_save_worker,
|
||||
subset,
|
||||
batch_size,
|
||||
cut_ids,
|
||||
audios,
|
||||
audio_hats,
|
||||
audio_lens,
|
||||
)
|
||||
)
|
||||
|
||||
num_cuts += batch_size
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(
|
||||
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||
)
|
||||
# return results
|
||||
for f in futures:
|
||||
f.result()
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
LibriTTSCodecDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
params.suffix = f"epoch-{params.epoch}"
|
||||
|
||||
params.res_dir = params.exp_dir / "infer" / params.suffix
|
||||
params.save_wav_dir = params.res_dir / "wav"
|
||||
params.save_wav_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-infer-{params.suffix}")
|
||||
logging.info("Infer started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
# we need cut ids to display results of both constructed and ground-truth audio
|
||||
args.return_cuts = True
|
||||
libritts = LibriTTSCodecDataModule(args)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
remove_encodec_weight_norm(model)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
encoder = model.encoder
|
||||
decoder = model.decoder
|
||||
quantizer = model.quantizer
|
||||
multi_scale_discriminator = model.multi_scale_discriminator
|
||||
multi_period_discriminator = model.multi_period_discriminator
|
||||
multi_scale_stft_discriminator = model.multi_scale_stft_discriminator
|
||||
|
||||
num_param_e = sum([p.numel() for p in encoder.parameters()])
|
||||
logging.info(f"Number of parameters in encoder: {num_param_e}")
|
||||
num_param_d = sum([p.numel() for p in decoder.parameters()])
|
||||
logging.info(f"Number of parameters in decoder: {num_param_d}")
|
||||
num_param_q = sum([p.numel() for p in quantizer.parameters()])
|
||||
logging.info(f"Number of parameters in quantizer: {num_param_q}")
|
||||
num_param_ds = sum([p.numel() for p in multi_scale_discriminator.parameters()])
|
||||
logging.info(f"Number of parameters in multi_scale_discriminator: {num_param_ds}")
|
||||
num_param_dp = sum([p.numel() for p in multi_period_discriminator.parameters()])
|
||||
logging.info(f"Number of parameters in multi_period_discriminator: {num_param_dp}")
|
||||
num_param_dstft = sum(
|
||||
[p.numel() for p in multi_scale_stft_discriminator.parameters()]
|
||||
)
|
||||
logging.info(
|
||||
f"Number of parameters in multi_scale_stft_discriminator: {num_param_dstft}"
|
||||
)
|
||||
logging.info(
|
||||
f"Total number of parameters: {num_param_e + num_param_d + num_param_q + num_param_ds + num_param_dp + num_param_dstft}"
|
||||
)
|
||||
|
||||
test_clean_cuts = libritts.test_clean_cuts()
|
||||
test_clean = libritts.test_dataloaders(test_clean_cuts)
|
||||
|
||||
test_other_cuts = libritts.test_other_cuts()
|
||||
test_other = libritts.test_dataloaders(test_other_cuts)
|
||||
|
||||
dev_clean_cuts = libritts.dev_clean_cuts()
|
||||
dev_clean = libritts.valid_dataloaders(dev_clean_cuts)
|
||||
|
||||
dev_other_cuts = libritts.dev_other_cuts()
|
||||
dev_other = libritts.valid_dataloaders(dev_other_cuts)
|
||||
|
||||
infer_sets = {
|
||||
"test-clean": test_clean,
|
||||
"test-other": test_other,
|
||||
"dev-clean": dev_clean,
|
||||
"dev-other": dev_other,
|
||||
}
|
||||
|
||||
for subset, dl in infer_sets.items():
|
||||
save_wav_dir = params.res_dir / "wav" / subset
|
||||
save_wav_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
logging.info(f"Processing {subset} set, saving to {save_wav_dir}")
|
||||
|
||||
infer_dataset(
|
||||
dl=dl,
|
||||
subset=subset,
|
||||
params=params,
|
||||
model=model,
|
||||
)
|
||||
|
||||
logging.info(f"Wav files are saved to {params.save_wav_dir}")
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -360,7 +360,7 @@ class ResidualVectorQuantization(nn.Module):
|
||||
all_indices = []
|
||||
n_q = n_q or len(self.layers)
|
||||
st = st or 0
|
||||
for layer in self.layers[st:n_q]: # 设置解码的起止layer
|
||||
for layer in self.layers[st:n_q]:
|
||||
indices = layer.encode(residual)
|
||||
quantized = layer.decode(indices)
|
||||
residual = residual - quantized
|
||||
|
@ -136,12 +136,6 @@ def get_parser():
|
||||
default=False,
|
||||
help="Whether to use half precision training.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--chunk-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The chunk size for the dataset (in second).",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
@ -191,6 +185,7 @@ def get_params() -> AttributeDict:
|
||||
"valid_interval": 200,
|
||||
"env_info": get_env_info(),
|
||||
"sampling_rate": 24000,
|
||||
"chunk_size": 1.0, # in seconds
|
||||
"lambda_adv": 1.0, # loss scaling coefficient for adversarial loss
|
||||
"lambda_wav": 100.0, # loss scaling coefficient for waveform loss
|
||||
"lambda_feat": 1.0, # loss scaling coefficient for feat loss
|
||||
@ -570,7 +565,7 @@ def train_one_epoch(
|
||||
valid_info.write_summary(
|
||||
tb_writer, "train/valid_", params.batch_idx_train
|
||||
)
|
||||
for index in range(params.num_samples): # 3
|
||||
for index in range(params.num_samples): # 3
|
||||
speech_hat_i = speech_hat[index]
|
||||
speech_i = speech[index]
|
||||
if speech_hat_i.dim() > 1:
|
||||
@ -655,8 +650,10 @@ def compute_validation_loss(
|
||||
# infer for first batch:
|
||||
if batch_idx == 0 and rank == 0:
|
||||
inner_model = model.module if isinstance(model, DDP) else model
|
||||
audio_pred = inner_model.inference(x=audio, target_bw=params.target_bw)
|
||||
returned_sample = (audio_pred, audio)
|
||||
_, audio_hat = inner_model.inference(
|
||||
x=audio, target_bw=params.target_bw
|
||||
)
|
||||
returned_sample = (audio_hat, audio)
|
||||
|
||||
if world_size > 1:
|
||||
tot_loss.reduce(device)
|
||||
|
Loading…
x
Reference in New Issue
Block a user