mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
* add egs/xbmu_amdo31 * fix xbmu_amdo31/ASR/pruned_transducer_stateless5/train.py * fix xbmu_amdo31/ASR/pruned_transducer_stateless5/asr_datamodule.py * fix xbmu_amdo31/ASR/prepare.sh * add RESULTS.md and README.md * dix pruned_transducer_stateless5 decode.py * add transducer stateless7 * fix transducer_stateless7 * fix RESULTS.md error * Add pruned_transducer_stateless7 validation set results
93 lines
2.7 KiB
Markdown
93 lines
2.7 KiB
Markdown
## Results
|
|
|
|
### XBMU-AMDO31 BPE training result (Stateless Transducer)
|
|
|
|
#### Pruned transducer stateless 5
|
|
|
|
[./pruned_transducer_stateless5](./pruned_transducer_stateless5)
|
|
|
|
It uses pruned RNN-T.
|
|
|
|
A pre-trained model and decoding logs can be found at <https://huggingface.co/syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29>
|
|
|
|
You can use <https://github.com/k2-fsa/sherpa> to deploy it.
|
|
|
|
Number of model parameters: 87801200, i.e., 87.8 M
|
|
|
|
| | test | dev | comment |
|
|
|------------------------|------|------|---------------------------------------|
|
|
| greedy search | 11.06| 11.73| --epoch 28 --avg 23 --max-duration 600|
|
|
| beam search | 10.64| 11.42| --epoch 28 --avg 23 --max-duration 600|
|
|
| modified beam search | 10.57| 11.24| --epoch 28 --avg 23 --max-duration 600|
|
|
|
|
|
|
Training command is:
|
|
|
|
```bash
|
|
cd egs/xbmu_amdo31/ASR
|
|
./prepare.sh
|
|
|
|
export CUDA_VISIBLE_DEVICES="0"
|
|
|
|
./pruned_transducer_stateless5/train.py
|
|
```
|
|
|
|
**Caution**: It uses `--context-size=1`.
|
|
|
|
|
|
The decoding command is:
|
|
```bash
|
|
for method in greedy_search beam_search modified_beam_search;
|
|
do
|
|
./pruned_transducer_stateless5/decode.py \
|
|
--epoch 28 \
|
|
--avg 23 \
|
|
--exp-dir ./pruned_transducer_stateless5/exp \
|
|
--max-duration 600 \
|
|
--decoding-method $method
|
|
done
|
|
```
|
|
|
|
### pruned_transducer_stateless7 (zipformer)
|
|
|
|
See <https://github.com/k2-fsa/icefall/pull/672> for more details.
|
|
|
|
[pruned_transducer_stateless7](./pruned_transducer_stateless7)
|
|
|
|
You can find a pretrained model, training logs, decoding logs, and decoding
|
|
results at:
|
|
<https://huggingface.co/syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02>
|
|
|
|
You can use <https://github.com/k2-fsa/sherpa> to deploy it.
|
|
|
|
Number of model parameters: 70369391, i.e., 70.37 M
|
|
|
|
| | test | dev | comment |
|
|
|----------------------|------|------|----------------------------------------|
|
|
| greedy search | 10.06| 10.59| --epoch 23 --avg 11 --max-duration 600 |
|
|
| beam search | 9.77 | 10.11| --epoch 23 --avg 11 --max-duration 600 |
|
|
| modified beam search | 9.7 | 10.12| --epoch 23 --avg 11 --max-duration 600 |
|
|
|
|
The training commands are:
|
|
```bash
|
|
export CUDA_VISIBLE_DEVICES="0"
|
|
|
|
./pruned_transducer_stateless7/train.py
|
|
```
|
|
|
|
The decoding commands are:
|
|
```bash
|
|
for m in greedy_search beam_search modified_beam_search; do
|
|
for epoch in 23; do
|
|
for avg in 11; do
|
|
./pruned_transducer_stateless7/decode.py \
|
|
--epoch $epoch \
|
|
--avg $avg \
|
|
--exp-dir ./pruned_transducer_stateless7/exp \
|
|
--max-duration 600 \
|
|
--decoding-method $m
|
|
done
|
|
done
|
|
done
|
|
```
|