mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* fixes for `diagnostics` Replace `2 ** 22` with `512` as the default value of `diagnostics.TensorDiagnosticOptions` also black formatted some scripts * fixed formatting issues
1062 lines
33 KiB
Python
Executable File
1062 lines
33 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2022 Behavox LLC. (authors: Daniil Kulko)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Usage:
|
|
|
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
|
|
|
./conformer_ctc/train.py \
|
|
--world-size 4 \
|
|
--num-epochs 30 \
|
|
--start-epoch 1 \
|
|
--exp-dir conformer_ctc/exp \
|
|
--max-duration 300
|
|
|
|
# For mix precision training:
|
|
|
|
./conformer_ctc/train.py \
|
|
--world-size 4 \
|
|
--num-epochs 30 \
|
|
--start-epoch 1 \
|
|
--use-fp16 1 \
|
|
--exp-dir conformer_ctc/exp \
|
|
--max-duration 550
|
|
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import copy
|
|
import logging
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
from typing import Any, Dict, Optional, Tuple, Union
|
|
|
|
import k2
|
|
import optim
|
|
import sentencepiece as spm
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
from asr_datamodule import TedLiumAsrDataModule
|
|
from conformer import Conformer
|
|
from lhotse.dataset.sampling.base import CutSampler
|
|
from lhotse.utils import fix_random_seed
|
|
from local.convert_transcript_words_to_bpe_ids import convert_texts_into_ids
|
|
from torch import Tensor
|
|
from torch.cuda.amp import GradScaler
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from icefall import diagnostics
|
|
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
|
from icefall.checkpoint import load_checkpoint, remove_checkpoints
|
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
|
from icefall.checkpoint import (
|
|
save_checkpoint_with_global_batch_idx,
|
|
update_averaged_model,
|
|
)
|
|
from icefall.dist import cleanup_dist, setup_dist
|
|
from icefall.env import get_env_info
|
|
from icefall.lexicon import Lexicon
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
MetricsTracker,
|
|
display_and_save_batch,
|
|
encode_supervisions,
|
|
setup_logger,
|
|
str2bool,
|
|
)
|
|
|
|
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
|
|
|
|
|
|
def add_model_arguments(parser: argparse.ArgumentParser) -> None:
|
|
parser.add_argument(
|
|
"--num-encoder-layers",
|
|
type=int,
|
|
default=24,
|
|
help="Number of conformer encoder layers..",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-decoder-layers",
|
|
type=int,
|
|
default=6,
|
|
help="""Number of decoder layer of transformer decoder.
|
|
Setting this to 0 will not create the decoder at all (pure CTC model)
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--att-rate",
|
|
type=float,
|
|
default=0.8,
|
|
help="""The attention rate.
|
|
The total loss is (1 - att_rate) * ctc_loss + att_rate * att_loss
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dim-feedforward",
|
|
type=int,
|
|
default=1536,
|
|
help="Feedforward module dimension of the conformer model.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--nhead",
|
|
type=int,
|
|
default=8,
|
|
help="Number of attention heads in the conformer multiheadattention modules.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dim-model",
|
|
type=int,
|
|
default=384,
|
|
help="Attention dimension in the conformer model.",
|
|
)
|
|
|
|
|
|
def get_parser() -> argparse.ArgumentParser:
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--world-size",
|
|
type=int,
|
|
default=1,
|
|
help="Number of GPUs for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--master-port",
|
|
type=int,
|
|
default=12354,
|
|
help="Master port to use for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tensorboard",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Should various information be logged in tensorboard.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-epochs",
|
|
type=int,
|
|
default=30,
|
|
help="Number of epochs to train.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start-epoch",
|
|
type=int,
|
|
default=1,
|
|
help="""Resume training from this epoch. It should be positive.
|
|
If larger than 1, it will load checkpoint from
|
|
exp-dir/epoch-{start_epoch-1}.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start-batch",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --start-epoch is ignored and
|
|
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="conformer_ctc/exp",
|
|
help="""The experiment dir.
|
|
It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lang-dir",
|
|
type=str,
|
|
default="data/lang_bpe_500",
|
|
help="""The lang dir
|
|
It contains language related input files such as
|
|
"lexicon.txt" and "bpe.model"
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--initial-lr",
|
|
type=float,
|
|
default=0.003,
|
|
help="The initial learning rate. This value should not need to be changed.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lr-batches",
|
|
type=float,
|
|
default=5000,
|
|
help="""Number of steps that affects how rapidly the learning rate
|
|
decreases. We suggest not to change this.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lr-epochs",
|
|
type=float,
|
|
default=6,
|
|
help="Number of epochs that affects how rapidly the learning rate decreases.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--seed",
|
|
type=int,
|
|
default=42,
|
|
help="The seed for random generators intended for reproducibility",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--print-diagnostics",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Accumulate stats on activations, print them and exit.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--save-every-n",
|
|
type=int,
|
|
default=4000,
|
|
help="""Save checkpoint after processing this number of batches"
|
|
periodically. We save checkpoint to exp-dir/ whenever
|
|
params.batch_idx_train % save_every_n == 0. The checkpoint filename
|
|
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
|
|
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
|
|
end of each epoch where `xxx` is the epoch number counting from 0.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--keep-last-k",
|
|
type=int,
|
|
default=30,
|
|
help="""Only keep this number of checkpoints on disk.
|
|
For instance, if it is 3, there are only 3 checkpoints
|
|
in the exp-dir with filenames `checkpoint-xxx.pt`.
|
|
It does not affect checkpoints with name `epoch-xxx.pt`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--average-period",
|
|
type=int,
|
|
default=100,
|
|
help="""Update the averaged model, namely `model_avg`, after processing
|
|
this number of batches. `model_avg` is a separate version of model,
|
|
in which each floating-point parameter is the average of all the
|
|
parameters from the start of training. Each time we take the average,
|
|
we do: `model_avg = model * (average_period / batch_idx_train) +
|
|
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-fp16",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to use half precision training.",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
"""Return a dict containing training parameters.
|
|
|
|
All training related parameters that are not passed from the commandline
|
|
are saved in the variable `params`.
|
|
|
|
Commandline options are merged into `params` after they are parsed, so
|
|
you can also access them via `params`.
|
|
|
|
Explanation of options saved in `params`:
|
|
|
|
- best_train_loss: Best training loss so far. It is used to select
|
|
the model that has the lowest training loss. It is
|
|
updated during the training.
|
|
|
|
- best_valid_loss: Best validation loss so far. It is used to select
|
|
the model that has the lowest validation loss. It is
|
|
updated during the training.
|
|
|
|
- best_train_epoch: It is the epoch that has the best training loss.
|
|
|
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
|
|
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
|
contains number of batches trained so far across
|
|
epochs.
|
|
|
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
|
|
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
|
|
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
|
|
|
- feature_dim: The model input dim. It has to match the one used
|
|
in computing features.
|
|
|
|
- subsampling_factor: The subsampling factor for the model.
|
|
|
|
- warm_step: The warm_step for Noam optimizer.
|
|
"""
|
|
params = AttributeDict(
|
|
{
|
|
"best_train_loss": float("inf"),
|
|
"best_valid_loss": float("inf"),
|
|
"best_train_epoch": -1,
|
|
"best_valid_epoch": -1,
|
|
"batch_idx_train": 0,
|
|
"log_interval": 10,
|
|
"reset_interval": 200,
|
|
"valid_interval": 1000,
|
|
# parameters for conformer
|
|
"feature_dim": 80,
|
|
"subsampling_factor": 4,
|
|
# parameters for ctc loss
|
|
"beam_size": 10,
|
|
"reduction": "none",
|
|
"use_double_scores": True,
|
|
# parameters for Noam
|
|
"model_warm_step": 3000, # arg given to model, not for lrate
|
|
"env_info": get_env_info(),
|
|
}
|
|
)
|
|
|
|
return params
|
|
|
|
|
|
def load_checkpoint_if_available(
|
|
params: AttributeDict,
|
|
model: torch.nn.Module,
|
|
model_avg: torch.nn.Module = None,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
scheduler: Optional[LRSchedulerType] = None,
|
|
) -> Optional[Dict[str, Any]]:
|
|
"""Load checkpoint from file.
|
|
|
|
If params.start_batch is positive, it will load the checkpoint from
|
|
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
|
|
params.start_epoch is larger than 1, it will load the checkpoint from
|
|
`params.start_epoch - 1`.
|
|
|
|
Apart from loading state dict for `model` and `optimizer` it also updates
|
|
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
|
and `best_valid_loss` in `params`.
|
|
|
|
Args:
|
|
params:
|
|
The return value of :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
optimizer:
|
|
The optimizer that we are using.
|
|
scheduler:
|
|
The scheduler that is used for training.
|
|
Returns:
|
|
Return a dict containing previously saved training info.
|
|
"""
|
|
if params.start_batch > 0:
|
|
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
|
|
elif params.start_epoch > 1:
|
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
|
else:
|
|
return None
|
|
|
|
assert filename.is_file(), f"{filename} does not exist!"
|
|
|
|
saved_params = load_checkpoint(
|
|
filename,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
)
|
|
|
|
keys = [
|
|
"best_train_epoch",
|
|
"best_valid_epoch",
|
|
"batch_idx_train",
|
|
"best_train_loss",
|
|
"best_valid_loss",
|
|
]
|
|
for k in keys:
|
|
params[k] = saved_params[k]
|
|
|
|
if params.start_batch > 0:
|
|
if "cur_epoch" in saved_params:
|
|
params["start_epoch"] = saved_params["cur_epoch"]
|
|
|
|
return saved_params
|
|
|
|
|
|
def save_checkpoint(
|
|
params: AttributeDict,
|
|
model: Union[torch.nn.Module, DDP],
|
|
model_avg: Optional[torch.nn.Module] = None,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
scheduler: Optional[LRSchedulerType] = None,
|
|
sampler: Optional[CutSampler] = None,
|
|
scaler: Optional[GradScaler] = None,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Save model, optimizer, scheduler and training stats to file.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
optimizer:
|
|
The optimizer used for training.
|
|
scheduler:
|
|
The learning rate scheduler used for training.
|
|
sampler:
|
|
The sampler for the training dataset.
|
|
scaler:
|
|
The scaler used for mix precision training.
|
|
"""
|
|
if rank != 0:
|
|
return
|
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
|
save_checkpoint_impl(
|
|
filename=filename,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.best_train_epoch == params.cur_epoch:
|
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
|
copyfile(src=filename, dst=best_train_filename)
|
|
|
|
if params.best_valid_epoch == params.cur_epoch:
|
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
|
copyfile(src=filename, dst=best_valid_filename)
|
|
|
|
|
|
def compute_loss(
|
|
params: AttributeDict,
|
|
model: Union[torch.nn.Module, DDP],
|
|
graph_compiler: BpeCtcTrainingGraphCompiler,
|
|
batch: dict,
|
|
is_training: bool,
|
|
warmup: float = 1.0,
|
|
) -> Tuple[Tensor, MetricsTracker]:
|
|
"""
|
|
Compute CTC loss given the model and its inputs.
|
|
Args:
|
|
params:
|
|
Parameters for training. See :func:`get_params`.
|
|
model:
|
|
The model for training. It is an instance of Conformer in our case.
|
|
batch:
|
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
|
for the content in it.
|
|
graph_compiler:
|
|
It is used to build a decoding graph from a ctc topo and training
|
|
transcript. The training transcript is contained in the given `batch`,
|
|
while the ctc topo is built when this compiler is instantiated.
|
|
is_training:
|
|
True for training. False for validation. When it is True, this
|
|
function enables autograd during computation; when it is False, it
|
|
disables autograd.
|
|
warmup: a floating point value which increases throughout training;
|
|
values >= 1.0 are fully warmed up and have all modules present.
|
|
"""
|
|
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
|
feature = batch["inputs"]
|
|
# at entry, feature is (N, T, C)
|
|
assert feature.ndim == 3
|
|
feature = feature.to(device)
|
|
|
|
supervisions = batch["supervisions"]
|
|
feature_lens = supervisions["num_frames"].to(device)
|
|
|
|
with torch.set_grad_enabled(is_training):
|
|
nnet_output, encoder_memory, memory_mask = model(
|
|
feature, supervisions, warmup=warmup
|
|
)
|
|
|
|
supervision_segments, texts = encode_supervisions(
|
|
supervisions, subsampling_factor=params.subsampling_factor
|
|
)
|
|
|
|
token_ids = convert_texts_into_ids(texts, graph_compiler.sp)
|
|
decoding_graph = graph_compiler.compile(token_ids)
|
|
|
|
dense_fsa_vec = k2.DenseFsaVec(
|
|
nnet_output,
|
|
supervision_segments,
|
|
allow_truncate=params.subsampling_factor - 1,
|
|
)
|
|
|
|
ctc_loss = k2.ctc_loss(
|
|
decoding_graph=decoding_graph,
|
|
dense_fsa_vec=dense_fsa_vec,
|
|
output_beam=params.beam_size,
|
|
reduction=params.reduction,
|
|
use_double_scores=params.use_double_scores,
|
|
)
|
|
|
|
if params.att_rate > 0.0:
|
|
with torch.set_grad_enabled(is_training):
|
|
mmodel = model.module if hasattr(model, "module") else model
|
|
# Note: We need to generate an unsorted version of token_ids
|
|
# `encode_supervisions()` called above sorts text, but
|
|
# encoder_memory and memory_mask are not sorted, so we
|
|
# use an unsorted version `supervisions["text"]` to regenerate
|
|
# the token_ids
|
|
#
|
|
# See https://github.com/k2-fsa/icefall/issues/97
|
|
# for more details
|
|
unsorted_token_ids = graph_compiler.texts_to_ids(supervisions["text"])
|
|
att_loss = mmodel.decoder_forward(
|
|
encoder_memory,
|
|
memory_mask,
|
|
token_ids=unsorted_token_ids,
|
|
sos_id=graph_compiler.sos_id,
|
|
eos_id=graph_compiler.eos_id,
|
|
warmup=warmup,
|
|
)
|
|
else:
|
|
att_loss = torch.tensor([0])
|
|
|
|
ctc_loss_is_finite = torch.isfinite(ctc_loss)
|
|
att_loss_is_finite = torch.isfinite(att_loss)
|
|
if torch.any(~ctc_loss_is_finite) or torch.any(~att_loss_is_finite):
|
|
logging.info(
|
|
"Not all losses are finite!\n"
|
|
f"ctc_loss: {ctc_loss}\n"
|
|
f"att_loss: {att_loss}"
|
|
)
|
|
display_and_save_batch(batch, params=params, sp=graph_compiler.sp)
|
|
ctc_loss = ctc_loss[ctc_loss_is_finite]
|
|
att_loss = att_loss[att_loss_is_finite]
|
|
|
|
# If the batch contains more than 10 utterances AND
|
|
# if either all ctc_loss or att_loss is inf or nan,
|
|
# we stop the training process by raising an exception
|
|
if torch.all(~ctc_loss_is_finite) or torch.all(~att_loss_is_finite):
|
|
raise ValueError(
|
|
"There are too many utterances in this batch "
|
|
"leading to inf or nan losses."
|
|
)
|
|
|
|
ctc_loss = ctc_loss.sum()
|
|
att_loss = att_loss.sum()
|
|
|
|
if params.att_rate > 0.0:
|
|
loss = (1.0 - params.att_rate) * ctc_loss + params.att_rate * att_loss
|
|
else:
|
|
loss = ctc_loss
|
|
|
|
assert loss.requires_grad == is_training
|
|
|
|
info = MetricsTracker()
|
|
# info["frames"] is an approximate number for two reasons:
|
|
# (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2
|
|
# (2) If some utterances in the batch lead to inf/nan loss, they
|
|
# are filtered out.
|
|
info["frames"] = (
|
|
torch.div(feature_lens, params.subsampling_factor, rounding_mode="floor")
|
|
.sum()
|
|
.item()
|
|
)
|
|
|
|
# `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa
|
|
info["utterances"] = feature.size(0)
|
|
# averaged input duration in frames over utterances
|
|
info["utt_duration"] = feature_lens.sum().item()
|
|
# averaged padding proportion over utterances
|
|
info["utt_pad_proportion"] = (
|
|
((feature.size(1) - feature_lens) / feature.size(1)).sum().item()
|
|
)
|
|
|
|
# Note: We use reduction=sum while computing the loss.
|
|
info["loss"] = loss.detach().cpu().item()
|
|
info["ctc_loss"] = ctc_loss.detach().cpu().item()
|
|
if params.att_rate > 0.0:
|
|
info["att_loss"] = att_loss.detach().cpu().item()
|
|
|
|
return loss, info
|
|
|
|
|
|
def compute_validation_loss(
|
|
params: AttributeDict,
|
|
model: Union[torch.nn.Module, DDP],
|
|
graph_compiler: BpeCtcTrainingGraphCompiler,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
world_size: int = 1,
|
|
) -> MetricsTracker:
|
|
"""Run the validation process."""
|
|
model.eval()
|
|
|
|
tot_loss = MetricsTracker()
|
|
|
|
for batch in valid_dl:
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
graph_compiler=graph_compiler,
|
|
batch=batch,
|
|
is_training=False,
|
|
)
|
|
assert loss.requires_grad is False
|
|
tot_loss = tot_loss + loss_info
|
|
|
|
if world_size > 1:
|
|
tot_loss.reduce(loss.device)
|
|
|
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
|
if loss_value < params.best_valid_loss:
|
|
params.best_valid_epoch = params.cur_epoch
|
|
params.best_valid_loss = loss_value
|
|
|
|
return tot_loss
|
|
|
|
|
|
def train_one_epoch(
|
|
params: AttributeDict,
|
|
model: Union[torch.nn.Module, DDP],
|
|
optimizer: torch.optim.Optimizer,
|
|
scheduler: LRSchedulerType,
|
|
graph_compiler: BpeCtcTrainingGraphCompiler,
|
|
train_dl: torch.utils.data.DataLoader,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
scaler: GradScaler,
|
|
model_avg: Optional[torch.nn.Module] = None,
|
|
tb_writer: Optional[SummaryWriter] = None,
|
|
world_size: int = 1,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Train the model for one epoch.
|
|
|
|
The training loss from the mean of all frames is saved in
|
|
`params.train_loss`. It runs the validation process every
|
|
`params.valid_interval` batches.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The model for training.
|
|
optimizer:
|
|
The optimizer we are using.
|
|
scheduler:
|
|
The learning rate scheduler, we call step() every step.
|
|
graph_compiler:
|
|
It is used to convert transcripts to FSAs.
|
|
train_dl:
|
|
Dataloader for the training dataset.
|
|
valid_dl:
|
|
Dataloader for the validation dataset.
|
|
scaler:
|
|
The scaler used for mix precision training.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
tb_writer:
|
|
Writer to write log messages to tensorboard.
|
|
world_size:
|
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
|
rank:
|
|
The rank of the node in DDP training. If no DDP is used, it should
|
|
be set to 0.
|
|
"""
|
|
model.train()
|
|
|
|
tot_loss = MetricsTracker()
|
|
|
|
for batch_idx, batch in enumerate(train_dl):
|
|
params.batch_idx_train += 1
|
|
batch_size = len(batch["supervisions"]["text"])
|
|
|
|
try:
|
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
|
loss, loss_info = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
graph_compiler=graph_compiler,
|
|
batch=batch,
|
|
is_training=True,
|
|
warmup=(params.batch_idx_train / params.model_warm_step),
|
|
)
|
|
# summary stats
|
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
|
|
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
|
# in the batch and there is no normalization to it so far.
|
|
scaler.scale(loss).backward()
|
|
scheduler.step_batch(params.batch_idx_train)
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
optimizer.zero_grad()
|
|
except: # noqa
|
|
display_and_save_batch(batch, params=params, sp=graph_compiler.sp)
|
|
raise
|
|
|
|
if params.print_diagnostics and batch_idx == 5:
|
|
return
|
|
|
|
if (
|
|
rank == 0
|
|
and params.batch_idx_train > 0
|
|
and params.batch_idx_train % params.average_period == 0
|
|
):
|
|
update_averaged_model(
|
|
params=params,
|
|
model_cur=model,
|
|
model_avg=model_avg,
|
|
)
|
|
|
|
if (
|
|
params.batch_idx_train > 0
|
|
and params.batch_idx_train % params.save_every_n == 0
|
|
):
|
|
save_checkpoint_with_global_batch_idx(
|
|
out_dir=params.exp_dir,
|
|
global_batch_idx=params.batch_idx_train,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
params=params,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
remove_checkpoints(
|
|
out_dir=params.exp_dir,
|
|
topk=params.keep_last_k,
|
|
rank=rank,
|
|
)
|
|
|
|
if batch_idx % params.log_interval == 0:
|
|
cur_lr = scheduler.get_last_lr()[0]
|
|
logging.info(
|
|
f"Epoch {params.cur_epoch}, "
|
|
f"batch {batch_idx}, loss[{loss_info}], "
|
|
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
|
f"lr: {cur_lr:.2e}"
|
|
)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar(
|
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
|
)
|
|
|
|
loss_info.write_summary(
|
|
tb_writer, "train/current_", params.batch_idx_train
|
|
)
|
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
|
|
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
|
logging.info("Computing validation loss")
|
|
valid_info = compute_validation_loss(
|
|
params=params,
|
|
model=model,
|
|
graph_compiler=graph_compiler,
|
|
valid_dl=valid_dl,
|
|
world_size=world_size,
|
|
)
|
|
model.train()
|
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
|
if tb_writer is not None:
|
|
valid_info.write_summary(
|
|
tb_writer, "train/valid_", params.batch_idx_train
|
|
)
|
|
|
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
|
params.train_loss = loss_value
|
|
if params.train_loss < params.best_train_loss:
|
|
params.best_train_epoch = params.cur_epoch
|
|
params.best_train_loss = params.train_loss
|
|
|
|
|
|
def run(rank, world_size, args):
|
|
"""
|
|
Args:
|
|
rank:
|
|
It is a value between 0 and `world_size-1`, which is
|
|
passed automatically by `mp.spawn()` in :func:`main`.
|
|
The node with rank 0 is responsible for saving checkpoint.
|
|
world_size:
|
|
Number of GPUs for DDP training.
|
|
args:
|
|
The return value of get_parser().parse_args()
|
|
"""
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
|
|
fix_random_seed(params.seed)
|
|
if world_size > 1:
|
|
setup_dist(rank, world_size, params.master_port)
|
|
|
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
|
logging.info("Training started")
|
|
logging.info(params)
|
|
|
|
if args.tensorboard and rank == 0:
|
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
|
else:
|
|
tb_writer = None
|
|
|
|
lexicon = Lexicon(params.lang_dir)
|
|
max_token_id = max(lexicon.tokens)
|
|
num_classes = max_token_id + 1 # +1 for the blank
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", rank)
|
|
logging.info(f"Device: {device}")
|
|
|
|
if "lang_bpe" not in str(params.lang_dir):
|
|
raise ValueError(
|
|
f"Unsupported type of lang dir (we expected it to have "
|
|
f"'lang_bpe' in its name): {params.lang_dir}"
|
|
)
|
|
|
|
graph_compiler = BpeCtcTrainingGraphCompiler(
|
|
params.lang_dir,
|
|
device=device,
|
|
sos_token="<sos/eos>",
|
|
eos_token="<sos/eos>",
|
|
)
|
|
|
|
logging.info("About to create model")
|
|
model = Conformer(
|
|
num_features=params.feature_dim,
|
|
num_classes=num_classes,
|
|
subsampling_factor=params.subsampling_factor,
|
|
d_model=params.dim_model,
|
|
nhead=params.nhead,
|
|
dim_feedforward=params.dim_feedforward,
|
|
num_encoder_layers=params.num_encoder_layers,
|
|
num_decoder_layers=params.num_decoder_layers,
|
|
)
|
|
|
|
num_param = sum([p.numel() for p in model.parameters()])
|
|
logging.info(f"Number of model parameters: {num_param}")
|
|
|
|
assert params.save_every_n >= params.average_period
|
|
model_avg: Optional[torch.nn.Module] = None
|
|
if rank == 0:
|
|
# model_avg is only used with rank 0
|
|
model_avg = copy.deepcopy(model)
|
|
|
|
assert params.start_epoch > 0, params.start_epoch
|
|
checkpoints = load_checkpoint_if_available(
|
|
params=params, model=model, model_avg=model_avg
|
|
)
|
|
|
|
model.to(device)
|
|
if world_size > 1:
|
|
logging.info("Using DDP")
|
|
model = DDP(model, device_ids=[rank])
|
|
|
|
optimizer = optim.Eve(model.parameters(), lr=params.initial_lr)
|
|
scheduler = optim.Eden(optimizer, params.lr_batches, params.lr_epochs)
|
|
|
|
if checkpoints and checkpoints.get("optimizer") is not None:
|
|
logging.info("Loading optimizer state dict")
|
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
|
|
|
if checkpoints and checkpoints.get("scheduler") is not None:
|
|
logging.info("Loading scheduler state dict")
|
|
scheduler.load_state_dict(checkpoints["scheduler"])
|
|
|
|
if params.print_diagnostics:
|
|
opts = diagnostics.TensorDiagnosticOptions(
|
|
512
|
|
) # allow 4 megabytes per sub-module
|
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
|
|
|
tedlium = TedLiumAsrDataModule(args)
|
|
|
|
train_cuts = tedlium.train_cuts()
|
|
|
|
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
|
# We only load the sampler's state dict when it loads a checkpoint
|
|
# saved in the middle of an epoch
|
|
sampler_state_dict = checkpoints["sampler"]
|
|
else:
|
|
sampler_state_dict = None
|
|
|
|
train_dl = tedlium.train_dataloaders(
|
|
train_cuts, sampler_state_dict=sampler_state_dict
|
|
)
|
|
|
|
valid_cuts = tedlium.dev_cuts()
|
|
valid_dl = tedlium.valid_dataloaders(valid_cuts)
|
|
|
|
if (
|
|
params.start_epoch <= 1
|
|
and params.start_batch <= 0
|
|
and not params.print_diagnostics
|
|
):
|
|
scan_pessimistic_batches_for_oom(
|
|
model=model,
|
|
train_dl=train_dl,
|
|
optimizer=optimizer,
|
|
graph_compiler=graph_compiler,
|
|
params=params,
|
|
warmup=0.0 if params.start_epoch == 1 else 1.0,
|
|
)
|
|
|
|
scaler = GradScaler(enabled=params.use_fp16)
|
|
if checkpoints and "grad_scaler" in checkpoints:
|
|
logging.info("Loading grad scaler state dict")
|
|
scaler.load_state_dict(checkpoints["grad_scaler"])
|
|
|
|
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
|
scheduler.step_epoch(epoch - 1)
|
|
fix_random_seed(params.seed + epoch - 1)
|
|
train_dl.sampler.set_epoch(epoch - 1)
|
|
train_dl.dataset.epoch = epoch - 1
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
|
|
|
params.cur_epoch = epoch
|
|
|
|
train_one_epoch(
|
|
params=params,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
graph_compiler=graph_compiler,
|
|
train_dl=train_dl,
|
|
valid_dl=valid_dl,
|
|
scaler=scaler,
|
|
tb_writer=tb_writer,
|
|
world_size=world_size,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.print_diagnostics:
|
|
diagnostic.print_diagnostics()
|
|
break
|
|
|
|
save_checkpoint(
|
|
params=params,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer=optimizer,
|
|
scheduler=scheduler,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
|
|
logging.info("Done!")
|
|
|
|
if world_size > 1:
|
|
torch.distributed.barrier()
|
|
cleanup_dist()
|
|
|
|
|
|
def scan_pessimistic_batches_for_oom(
|
|
model: Union[torch.nn.Module, DDP],
|
|
train_dl: torch.utils.data.DataLoader,
|
|
optimizer: torch.optim.Optimizer,
|
|
graph_compiler: BpeCtcTrainingGraphCompiler,
|
|
params: AttributeDict,
|
|
warmup: float,
|
|
):
|
|
from lhotse.dataset import find_pessimistic_batches
|
|
|
|
logging.info(
|
|
"Sanity check -- see if any of the batches in epoch 1 would cause OOM."
|
|
)
|
|
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
|
|
for criterion, cuts in batches.items():
|
|
batch = train_dl.dataset[cuts]
|
|
try:
|
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
|
loss, _ = compute_loss(
|
|
params=params,
|
|
model=model,
|
|
graph_compiler=graph_compiler,
|
|
batch=batch,
|
|
is_training=True,
|
|
warmup=warmup,
|
|
)
|
|
loss.backward()
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
except Exception as e:
|
|
if "CUDA out of memory" in str(e):
|
|
logging.error(
|
|
"Your GPU ran out of memory with the current "
|
|
"max_duration setting. We recommend decreasing "
|
|
"max_duration and trying again.\n"
|
|
f"Failing criterion: {criterion} "
|
|
f"(={crit_values[criterion]}) ..."
|
|
)
|
|
display_and_save_batch(batch, params=params, sp=graph_compiler.sp)
|
|
raise
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
TedLiumAsrDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
world_size = args.world_size
|
|
assert world_size >= 1
|
|
if world_size > 1:
|
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
|
else:
|
|
run(rank=0, world_size=1, args=args)
|
|
|
|
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
|
|
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
|
# in PyTorch 1.12 and later.
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
if __name__ == "__main__":
|
|
main()
|