mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
fixes for init value of diagnostics.TensorDiagnosticOptions
(#1269)
* fixes for `diagnostics` Replace `2 ** 22` with `512` as the default value of `diagnostics.TensorDiagnosticOptions` also black formatted some scripts * fixed formatting issues
This commit is contained in:
parent
34e40a86b3
commit
ef658d691e
@ -635,7 +635,6 @@ def train_one_epoch(
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
@ -800,7 +799,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -872,7 +872,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1045,7 +1045,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1028,7 +1028,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1031,7 +1031,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1019,7 +1019,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -730,7 +730,6 @@ def train_one_epoch(
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
@ -919,7 +918,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -908,7 +908,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -635,7 +635,6 @@ def train_one_epoch(
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
|
||||
@ -800,7 +799,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -999,7 +999,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -988,7 +988,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1019,7 +1019,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1074,7 +1074,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1075,7 +1075,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -953,7 +953,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -953,7 +953,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -955,7 +955,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -811,7 +811,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1003,7 +1003,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1132,7 +1132,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -117,7 +117,7 @@ class BatchedOptimizer(Optimizer):
|
||||
|
||||
yield tuples # <-- calling code will do the actual optimization here!
|
||||
|
||||
for ((stacked_params, _state, _names), batch) in zip(tuples, batches):
|
||||
for (stacked_params, _state, _names), batch in zip(tuples, batches):
|
||||
for i, p in enumerate(batch): # batch is list of Parameter
|
||||
p.copy_(stacked_params[i])
|
||||
|
||||
@ -181,7 +181,6 @@ class ScaledAdam(BatchedOptimizer):
|
||||
parameters_names=None,
|
||||
show_dominant_parameters=True,
|
||||
):
|
||||
|
||||
assert parameters_names is not None, (
|
||||
"Please prepare parameters_names,"
|
||||
"which is a List[List[str]]. Each List[str] is for a group"
|
||||
@ -224,9 +223,7 @@ class ScaledAdam(BatchedOptimizer):
|
||||
batch = True
|
||||
|
||||
for group, group_params_names in zip(self.param_groups, self.parameters_names):
|
||||
|
||||
with self.batched_params(group["params"], group_params_names) as batches:
|
||||
|
||||
# batches is list of pairs (stacked_param, state). stacked_param is like
|
||||
# a regular parameter, and will have a .grad, but the 1st dim corresponds to
|
||||
# a stacking dim, it is not a real dim.
|
||||
@ -325,7 +322,7 @@ class ScaledAdam(BatchedOptimizer):
|
||||
clipping_update_period = group["clipping_update_period"]
|
||||
|
||||
tot_sumsq = torch.tensor(0.0, device=first_p.device)
|
||||
for (p, state, param_names) in tuples:
|
||||
for p, state, param_names in tuples:
|
||||
grad = p.grad
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError(
|
||||
@ -410,7 +407,7 @@ class ScaledAdam(BatchedOptimizer):
|
||||
from tuples, we still pass it to save some time.
|
||||
"""
|
||||
all_sumsq_orig = {}
|
||||
for (p, state, batch_param_names) in tuples:
|
||||
for p, state, batch_param_names in tuples:
|
||||
# p is a stacked batch parameters.
|
||||
batch_grad = p.grad
|
||||
if p.numel() == p.shape[0]: # a batch of scalars
|
||||
@ -426,7 +423,6 @@ class ScaledAdam(BatchedOptimizer):
|
||||
for name, sumsq_orig, rms, grad in zip(
|
||||
batch_param_names, batch_sumsq_orig, batch_rms_orig, batch_grad
|
||||
):
|
||||
|
||||
proportion_orig = sumsq_orig / tot_sumsq
|
||||
all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)
|
||||
|
||||
@ -1039,7 +1035,7 @@ def _test_scaled_adam(hidden_dim: int):
|
||||
|
||||
# if epoch == 130:
|
||||
# opts = diagnostics.TensorDiagnosticOptions(
|
||||
# 2 ** 22
|
||||
# 512
|
||||
# ) # allow 4 megabytes per sub-module
|
||||
# diagnostic = diagnostics.attach_diagnostics(m, opts)
|
||||
|
||||
|
@ -1028,7 +1028,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1052,7 +1052,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1042,7 +1042,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1029,7 +1029,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1030,7 +1030,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1141,7 +1141,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1154,7 +1154,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -230,7 +230,9 @@ class Conformer(Transformer):
|
||||
x, pos_emb, mask=mask, src_key_padding_mask=src_key_padding_mask
|
||||
) # (T, B, F)
|
||||
else:
|
||||
x = self.encoder(x, pos_emb, src_key_padding_mask=src_key_padding_mask) # (T, B, F)
|
||||
x = self.encoder(
|
||||
x, pos_emb, src_key_padding_mask=src_key_padding_mask
|
||||
) # (T, B, F)
|
||||
|
||||
if self.normalize_before:
|
||||
x = self.after_norm(x)
|
||||
|
@ -61,10 +61,15 @@ class Decoder(nn.Module):
|
||||
)
|
||||
# the balancers are to avoid any drift in the magnitude of the
|
||||
# embeddings, which would interact badly with parameter averaging.
|
||||
self.balancer = Balancer(decoder_dim, channel_dim=-1,
|
||||
min_positive=0.0, max_positive=1.0,
|
||||
min_abs=0.5, max_abs=1.0,
|
||||
prob=0.05)
|
||||
self.balancer = Balancer(
|
||||
decoder_dim,
|
||||
channel_dim=-1,
|
||||
min_positive=0.0,
|
||||
max_positive=1.0,
|
||||
min_abs=0.5,
|
||||
max_abs=1.0,
|
||||
prob=0.05,
|
||||
)
|
||||
|
||||
self.blank_id = blank_id
|
||||
|
||||
@ -81,10 +86,15 @@ class Decoder(nn.Module):
|
||||
groups=decoder_dim // 4, # group size == 4
|
||||
bias=False,
|
||||
)
|
||||
self.balancer2 = Balancer(decoder_dim, channel_dim=-1,
|
||||
min_positive=0.0, max_positive=1.0,
|
||||
min_abs=0.5, max_abs=1.0,
|
||||
prob=0.05)
|
||||
self.balancer2 = Balancer(
|
||||
decoder_dim,
|
||||
channel_dim=-1,
|
||||
min_positive=0.0,
|
||||
max_positive=1.0,
|
||||
min_abs=0.5,
|
||||
max_abs=1.0,
|
||||
prob=0.05,
|
||||
)
|
||||
|
||||
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
|
||||
"""
|
||||
@ -107,9 +117,7 @@ class Decoder(nn.Module):
|
||||
if self.context_size > 1:
|
||||
embedding_out = embedding_out.permute(0, 2, 1)
|
||||
if need_pad is True:
|
||||
embedding_out = F.pad(
|
||||
embedding_out, pad=(self.context_size - 1, 0)
|
||||
)
|
||||
embedding_out = F.pad(embedding_out, pad=(self.context_size - 1, 0))
|
||||
else:
|
||||
# During inference time, there is no need to do extra padding
|
||||
# as we only need one output
|
||||
|
@ -52,12 +52,13 @@ class Joiner(nn.Module):
|
||||
Returns:
|
||||
Return a tensor of shape (N, T, s_range, C).
|
||||
"""
|
||||
assert encoder_out.ndim == decoder_out.ndim, (encoder_out.shape, decoder_out.shape)
|
||||
assert encoder_out.ndim == decoder_out.ndim, (
|
||||
encoder_out.shape,
|
||||
decoder_out.shape,
|
||||
)
|
||||
|
||||
if project_input:
|
||||
logit = self.encoder_proj(encoder_out) + self.decoder_proj(
|
||||
decoder_out
|
||||
)
|
||||
logit = self.encoder_proj(encoder_out) + self.decoder_proj(decoder_out)
|
||||
else:
|
||||
logit = encoder_out + decoder_out
|
||||
|
||||
|
@ -303,7 +303,9 @@ def main():
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
start_time = time.time()
|
||||
results, total_duration = decode_dataset(dl=test_dl, model=model, token_table=token_table)
|
||||
results, total_duration = decode_dataset(
|
||||
dl=test_dl, model=model, token_table=token_table
|
||||
)
|
||||
end_time = time.time()
|
||||
elapsed_seconds = end_time - start_time
|
||||
rtf = elapsed_seconds / total_duration
|
||||
|
@ -116,7 +116,7 @@ class BatchedOptimizer(Optimizer):
|
||||
|
||||
yield tuples # <-- calling code will do the actual optimization here!
|
||||
|
||||
for ((stacked_params, _state, _names), batch) in zip(tuples, batches):
|
||||
for (stacked_params, _state, _names), batch in zip(tuples, batches):
|
||||
for i, p in enumerate(batch): # batch is list of Parameter
|
||||
p.copy_(stacked_params[i])
|
||||
|
||||
@ -181,7 +181,6 @@ class ScaledAdam(BatchedOptimizer):
|
||||
size_update_period=4,
|
||||
clipping_update_period=100,
|
||||
):
|
||||
|
||||
defaults = dict(
|
||||
lr=lr,
|
||||
clipping_scale=clipping_scale,
|
||||
@ -299,8 +298,8 @@ class ScaledAdam(BatchedOptimizer):
|
||||
# the input is groups of parameter or named parameter.
|
||||
for cur_group in iterable_or_groups:
|
||||
assert "named_params" in cur_group
|
||||
name_list = [ x[0] for x in cur_group["named_params"] ]
|
||||
p_list = [ x[1] for x in cur_group["named_params"] ]
|
||||
name_list = [x[0] for x in cur_group["named_params"]]
|
||||
p_list = [x[1] for x in cur_group["named_params"]]
|
||||
del cur_group["named_params"]
|
||||
cur_group["params"] = p_list
|
||||
param_groups.append(cur_group)
|
||||
@ -327,9 +326,7 @@ class ScaledAdam(BatchedOptimizer):
|
||||
batch = True
|
||||
|
||||
for group, group_params_names in zip(self.param_groups, self.parameters_names):
|
||||
|
||||
with self.batched_params(group["params"], group_params_names) as batches:
|
||||
|
||||
# batches is list of pairs (stacked_param, state). stacked_param is like
|
||||
# a regular parameter, and will have a .grad, but the 1st dim corresponds to
|
||||
# a stacking dim, it is not a real dim.
|
||||
@ -428,7 +425,7 @@ class ScaledAdam(BatchedOptimizer):
|
||||
clipping_update_period = group["clipping_update_period"]
|
||||
|
||||
tot_sumsq = torch.tensor(0.0, device=first_p.device)
|
||||
for (p, state, param_names) in tuples:
|
||||
for p, state, param_names in tuples:
|
||||
grad = p.grad
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError(
|
||||
@ -513,7 +510,7 @@ class ScaledAdam(BatchedOptimizer):
|
||||
from tuples, we still pass it to save some time.
|
||||
"""
|
||||
all_sumsq_orig = {}
|
||||
for (p, state, batch_param_names) in tuples:
|
||||
for p, state, batch_param_names in tuples:
|
||||
# p is a stacked batch parameters.
|
||||
batch_grad = p.grad
|
||||
if p.numel() == p.shape[0]: # a batch of scalars
|
||||
@ -529,7 +526,6 @@ class ScaledAdam(BatchedOptimizer):
|
||||
for name, sumsq_orig, rms, grad in zip(
|
||||
batch_param_names, batch_sumsq_orig, batch_rms_orig, batch_grad
|
||||
):
|
||||
|
||||
proportion_orig = sumsq_orig / tot_sumsq
|
||||
all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)
|
||||
|
||||
@ -667,8 +663,7 @@ class ScaledAdam(BatchedOptimizer):
|
||||
# We have to look at the trained model for parameters at or around the
|
||||
# param_max_rms, because sometimes they can indicate a problem with the
|
||||
# topology or settings.
|
||||
scale_step = torch.minimum(scale_step,
|
||||
(param_max_rms - param_rms) / param_rms)
|
||||
scale_step = torch.minimum(scale_step, (param_max_rms - param_rms) / param_rms)
|
||||
|
||||
delta = state["delta"]
|
||||
# the factor of (1-beta1) relates to momentum.
|
||||
@ -879,7 +874,8 @@ class Eden(LRScheduler):
|
||||
warmup_factor = (
|
||||
1.0
|
||||
if self.batch >= self.warmup_batches
|
||||
else self.warmup_start + (1.0 - self.warmup_start) * (self.batch / self.warmup_batches)
|
||||
else self.warmup_start
|
||||
+ (1.0 - self.warmup_start) * (self.batch / self.warmup_batches)
|
||||
# else 0.5 + 0.5 * (self.batch / self.warmup_batches)
|
||||
)
|
||||
|
||||
@ -1111,7 +1107,7 @@ def _test_scaled_adam(hidden_dim: int):
|
||||
|
||||
# if epoch == 130:
|
||||
# opts = diagnostics.TensorDiagnosticOptions(
|
||||
# 2 ** 22
|
||||
# 512
|
||||
# ) # allow 4 megabytes per sub-module
|
||||
# diagnostic = diagnostics.attach_diagnostics(m, opts)
|
||||
|
||||
|
@ -100,17 +100,13 @@ class Model(nn.Module):
|
||||
self.encoder_embed = encoder_embed
|
||||
self.encoder_proj = encoder_proj
|
||||
|
||||
def forward(
|
||||
self, feature: Tensor, feature_lens: Tensor
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
def forward(self, feature: Tensor, feature_lens: Tensor) -> Tuple[Tensor, Tensor]:
|
||||
x, x_lens = self.encoder_embed(feature, feature_lens)
|
||||
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
|
||||
encoder_out, encoder_out_lens = self.encoder(
|
||||
x, x_lens, src_key_padding_mask
|
||||
)
|
||||
encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask)
|
||||
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
logits = self.encoder_proj(encoder_out)
|
||||
@ -168,9 +164,7 @@ def main():
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
main()
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -282,9 +282,7 @@ def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
|
||||
)
|
||||
batch_states.append(cached_embed_left_pad)
|
||||
|
||||
processed_lens = torch.cat(
|
||||
[state_list[i][-1] for i in range(batch_size)], dim=0
|
||||
)
|
||||
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
|
||||
batch_states.append(processed_lens)
|
||||
|
||||
return batch_states
|
||||
@ -322,9 +320,7 @@ def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
|
||||
for layer in range(tot_num_layers):
|
||||
layer_offset = layer * 6
|
||||
# cached_key: (left_context_len, batch_size, key_dim)
|
||||
cached_key_list = batch_states[layer_offset].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
|
||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
@ -355,9 +351,7 @@ def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
|
||||
cached_conv2_list[i],
|
||||
]
|
||||
|
||||
cached_embed_left_pad_list = batch_states[-2].chunk(
|
||||
chunks=batch_size, dim=0
|
||||
)
|
||||
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
|
||||
for i in range(batch_size):
|
||||
state_list[i].append(cached_embed_left_pad_list[i])
|
||||
|
||||
@ -380,11 +374,7 @@ def streaming_forward(
|
||||
Returns encoder outputs, output lengths, and updated states.
|
||||
"""
|
||||
cached_embed_left_pad = states[-2]
|
||||
(
|
||||
x,
|
||||
x_lens,
|
||||
new_cached_embed_left_pad,
|
||||
) = model.encoder_embed.streaming_forward(
|
||||
(x, x_lens, new_cached_embed_left_pad,) = model.encoder_embed.streaming_forward(
|
||||
x=features,
|
||||
x_lens=feature_lens,
|
||||
cached_left_pad=cached_embed_left_pad,
|
||||
@ -404,9 +394,7 @@ def streaming_forward(
|
||||
new_processed_lens = processed_lens + x_lens
|
||||
|
||||
# (batch, left_context_size + chunk_size)
|
||||
src_key_padding_mask = torch.cat(
|
||||
[processed_mask, src_key_padding_mask], dim=1
|
||||
)
|
||||
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
encoder_states = states[:-2]
|
||||
@ -494,9 +482,7 @@ def decode_one_chunk(
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
greedy_search(
|
||||
model=model, encoder_out=encoder_out, streams=decode_streams
|
||||
)
|
||||
greedy_search(model=model, encoder_out=encoder_out, streams=decode_streams)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
processed_lens = torch.tensor(processed_lens, device=device)
|
||||
processed_lens = processed_lens + encoder_out_lens
|
||||
@ -517,9 +503,7 @@ def decode_one_chunk(
|
||||
num_active_paths=params.num_active_paths,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
|
||||
states = unstack_states(new_states)
|
||||
|
||||
@ -577,9 +561,7 @@ def decode_dataset(
|
||||
decode_streams = []
|
||||
for num, cut in enumerate(cuts):
|
||||
# each utterance has a DecodeStream.
|
||||
initial_states = get_init_states(
|
||||
model=model, batch_size=1, device=device
|
||||
)
|
||||
initial_states = get_init_states(model=model, batch_size=1, device=device)
|
||||
decode_stream = DecodeStream(
|
||||
params=params,
|
||||
cut_id=cut.id,
|
||||
@ -649,9 +631,7 @@ def decode_dataset(
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
key = f"num_active_paths_{params.num_active_paths}"
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
return {key: decode_results}
|
||||
|
||||
|
||||
@ -684,8 +664,7 @@ def save_results(
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir
|
||||
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
@ -718,9 +697,7 @@ def main():
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
assert params.causal, params.causal
|
||||
assert (
|
||||
"," not in params.chunk_size
|
||||
), "chunk_size should be one value in decoding."
|
||||
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
@ -760,9 +737,9 @@ def main():
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg]
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
@ -789,9 +766,9 @@ def main():
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(
|
||||
params.exp_dir, iteration=-params.iter
|
||||
)[: params.avg + 1]
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
|
@ -107,9 +107,7 @@ class ConvNeXt(nn.Module):
|
||||
if layerdrop_rate != 0.0:
|
||||
batch_size = x.shape[0]
|
||||
mask = (
|
||||
torch.rand(
|
||||
(batch_size, 1, 1, 1), dtype=x.dtype, device=x.device
|
||||
)
|
||||
torch.rand((batch_size, 1, 1, 1), dtype=x.dtype, device=x.device)
|
||||
> layerdrop_rate
|
||||
)
|
||||
else:
|
||||
@ -278,9 +276,7 @@ class Conv2dSubsampling(nn.Module):
|
||||
# many copies of this extra gradient term.
|
||||
self.out_whiten = Whiten(
|
||||
num_groups=1,
|
||||
whitening_limit=ScheduledFloat(
|
||||
(0.0, 4.0), (20000.0, 8.0), default=4.0
|
||||
),
|
||||
whitening_limit=ScheduledFloat((0.0, 4.0), (20000.0, 8.0), default=4.0),
|
||||
prob=(0.025, 0.25),
|
||||
grad_scale=0.02,
|
||||
)
|
||||
@ -331,7 +327,7 @@ class Conv2dSubsampling(nn.Module):
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
x_lens = (x_lens - 7) // 2
|
||||
assert x.size(1) == x_lens.max().item() , (x.size(1), x_lens.max())
|
||||
assert x.size(1) == x_lens.max().item(), (x.size(1), x_lens.max())
|
||||
|
||||
return x, x_lens
|
||||
|
||||
@ -403,8 +399,8 @@ class Conv2dSubsampling(nn.Module):
|
||||
left_pad = self.convnext.padding[0]
|
||||
freq = self.out_width
|
||||
channels = self.layer3_channels
|
||||
cached_embed_left_pad = torch.zeros(
|
||||
batch_size, channels, left_pad, freq
|
||||
).to(device)
|
||||
cached_embed_left_pad = torch.zeros(batch_size, channels, left_pad, freq).to(
|
||||
device
|
||||
)
|
||||
|
||||
return cached_embed_left_pad
|
||||
|
@ -604,11 +604,11 @@ def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||
|
||||
|
||||
def get_model(params: AttributeDict) -> nn.Module:
|
||||
assert (
|
||||
params.use_transducer or params.use_ctc
|
||||
), (f"At least one of them should be True, "
|
||||
assert params.use_transducer or params.use_ctc, (
|
||||
f"At least one of them should be True, "
|
||||
f"but got params.use_transducer={params.use_transducer}, "
|
||||
f"params.use_ctc={params.use_ctc}")
|
||||
f"params.use_ctc={params.use_ctc}"
|
||||
)
|
||||
|
||||
encoder_embed = get_encoder_embed(params)
|
||||
encoder = get_encoder_model(params)
|
||||
@ -808,17 +808,16 @@ def compute_loss(
|
||||
# take down the scale on the simple loss from 1.0 at the start
|
||||
# to params.simple_loss scale by warm_step.
|
||||
simple_loss_scale = (
|
||||
s if batch_idx_train >= warm_step
|
||||
s
|
||||
if batch_idx_train >= warm_step
|
||||
else 1.0 - (batch_idx_train / warm_step) * (1.0 - s)
|
||||
)
|
||||
pruned_loss_scale = (
|
||||
1.0 if batch_idx_train >= warm_step
|
||||
1.0
|
||||
if batch_idx_train >= warm_step
|
||||
else 0.1 + 0.9 * (batch_idx_train / warm_step)
|
||||
)
|
||||
loss += (
|
||||
simple_loss_scale * simple_loss
|
||||
+ pruned_loss_scale * pruned_loss
|
||||
)
|
||||
loss += simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
|
||||
|
||||
if params.use_ctc:
|
||||
loss += params.ctc_loss_scale * ctc_loss
|
||||
@ -1166,7 +1165,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -981,7 +981,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -746,7 +746,6 @@ def train_one_epoch(
|
||||
tot_loss = MetricsTracker()
|
||||
|
||||
for batch_idx, batch in enumerate(train_dl):
|
||||
|
||||
if batch["inputs"].shape[0] == len(batch["supervisions"]["text"]):
|
||||
params.batch_idx_train += 1
|
||||
batch_size = len(batch["supervisions"]["text"])
|
||||
@ -966,7 +965,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
@ -1019,7 +1018,6 @@ def run(rank, world_size, args):
|
||||
scaler.load_state_dict(checkpoints["grad_scaler"])
|
||||
|
||||
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
||||
|
||||
scheduler.step_epoch(epoch - 1)
|
||||
fix_random_seed(params.seed + epoch - 1)
|
||||
train_dl.sampler.set_epoch(epoch - 1)
|
||||
@ -1118,7 +1116,6 @@ def scan_pessimistic_batches_for_oom(
|
||||
# (i.e. are not remembered by the decaying-average in adam), because
|
||||
# we want to avoid these params being subject to shrinkage in adam.
|
||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||
|
||||
loss, _, _ = compute_loss(
|
||||
params=params,
|
||||
model=model,
|
||||
|
@ -1164,7 +1164,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -915,7 +915,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -69,7 +69,7 @@ from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from zipformer import Zipformer
|
||||
|
||||
from icefall import diagnostics, byte_encode, tokenize_by_CJK_char
|
||||
from icefall import byte_encode, diagnostics, tokenize_by_CJK_char
|
||||
from icefall.checkpoint import load_checkpoint, remove_checkpoints
|
||||
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||
from icefall.checkpoint import (
|
||||
@ -1018,7 +1018,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -905,7 +905,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1126,7 +1126,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -886,7 +886,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -851,7 +851,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -985,7 +985,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1128,7 +1128,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -1001,7 +1001,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
@ -993,7 +993,7 @@ def run(rank, world_size, args):
|
||||
|
||||
if params.print_diagnostics:
|
||||
opts = diagnostics.TensorDiagnosticOptions(
|
||||
2**22
|
||||
512
|
||||
) # allow 4 megabytes per sub-module
|
||||
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user