icefall/egs/tal_csasr/ASR/RESULTS.md
Wei Kang bccd20d978
Traning with byte level BPE (TAL_CSASR) (#1033)
* Add byte level bpe tal_csasr recipe

* Minor fixes to decoding and exporting

* Fix prepare.sh

* Update results
2023-05-16 12:44:52 +08:00

134 lines
3.9 KiB
Markdown

## Results
#### Pruned transducer stateless 7 (zipformer)
See <https://github.com/k2-fsa/icefall/pull/1033>
[./pruned_transducer_stateless7_bbpe](./pruned_transducer_stateless7_bbpe)
**Note**: The modeling units are byte level BPEs
The best results I have gotten are:
Vocab size | greedy (dev & test) | modified beam search (dev & test) | |
-- | -- | -- | --
500 | 6.88 & 6.98 | 6.87 & 6.94 | --epoch 35 --avg 26
The training command:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./pruned_transducer_stateless7_bbpe/train.py \
--world-size 4 \
--start-epoch 1 \
--num-epochs 35 \
--use-fp16 1 \
--max-duration 800 \
--bbpe-model data/lang_bbpe_500/bbpe.model \
--exp-dir pruned_transducer_stateless7_bbpe/exp \
--master-port 12535
```
The decoding command:
```
./pruned_transducer_stateless7_bbpe/decode.py \
--epoch 35 \
--avg 26 \
--exp-dir ./pruned_transducer_stateless7_bbpe/exp \
--max-sym-per-frame 1 \
--bpe-model data/lang_bbpe_500/bbpe.model \
--max-duration 2000 \
--decoding-method greedy_search # modified_beam_search
```
The pretrained model is available at: https://huggingface.co/pkufool/icefall_asr_tal_csasr_pruned_transducer_stateless7_bbpe
### TAL_CSASR Mix Chars and BPEs training results (Pruned Transducer Stateless5)
#### 2022-06-22
Using the codes from this PR https://github.com/k2-fsa/icefall/pull/428.
The WERs are
|decoding-method | epoch(iter) | avg | dev | test |
|--|--|--|--|--|
|greedy_search | 30 | 24 | 7.49 | 7.58|
|modified_beam_search | 30 | 24 | 7.33 | 7.38|
|fast_beam_search | 30 | 24 | 7.32 | 7.42|
|greedy_search(use-averaged-model=True) | 30 | 24 | 7.30 | 7.39|
|modified_beam_search(use-averaged-model=True) | 30 | 24 | 7.15 | 7.22|
|fast_beam_search(use-averaged-model=True) | 30 | 24 | 7.18 | 7.27|
|greedy_search | 348000 | 30 | 7.46 | 7.54|
|modified_beam_search | 348000 | 30 | 7.24 | 7.36|
|fast_beam_search | 348000 | 30 | 7.25 | 7.39 |
The results (CER(%) and WER(%)) for Chinese CER and English WER respectivly (zh: Chinese, en: English):
|decoding-method | epoch(iter) | avg | dev | dev_zh | dev_en | test | test_zh | test_en |
|--|--|--|--|--|--|--|--|--|
|greedy_search(use-averaged-model=True) | 30 | 24 | 7.30 | 6.48 | 19.19 |7.39| 6.66 | 19.13|
|modified_beam_search(use-averaged-model=True) | 30 | 24 | 7.15 | 6.35 | 18.95 | 7.22| 6.50 | 18.70 |
|fast_beam_search(use-averaged-model=True) | 30 | 24 | 7.18 | 6.39| 18.90 | 7.27| 6.55 | 18.77|
The training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5"
./pruned_transducer_stateless5/train.py \
--world-size 6 \
--num-epochs 30 \
--start-epoch 1 \
--exp-dir pruned_transducer_stateless5/exp \
--lang-dir data/lang_char \
--max-duration 90
```
The tensorboard training log can be found at
https://tensorboard.dev/experiment/KaACzXOVR0OM6cy0qbN5hw/#scalars
The decoding command is:
```
epoch=30
avg=24
use_average_model=True
## greedy search
./pruned_transducer_stateless5/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir pruned_transducer_stateless5/exp \
--lang-dir ./data/lang_char \
--max-duration 800 \
--use-averaged-model $use_average_model
## modified beam search
./pruned_transducer_stateless5/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir pruned_transducer_stateless5/exp \
--lang-dir ./data/lang_char \
--max-duration 800 \
--decoding-method modified_beam_search \
--beam-size 4 \
--use-averaged-model $use_average_model
## fast beam search
./pruned_transducer_stateless5/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless5/exp \
--lang-dir ./data/lang_char \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8 \
--use-averaged-model $use_average_model
```
A pre-trained model and decoding logs can be found at <https://huggingface.co/luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5>