mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* fixes for `diagnostics` Replace `2 ** 22` with `512` as the default value of `diagnostics.TensorDiagnosticOptions` also black formatted some scripts * fixed formatting issues
407 lines
13 KiB
Python
407 lines
13 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2023 Xiaomi Corp. (authors: Daniel Povey,
|
|
# Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Tuple
|
|
import warnings
|
|
|
|
import torch
|
|
from torch import Tensor, nn
|
|
from scaling import (
|
|
Balancer,
|
|
BiasNorm,
|
|
Dropout3,
|
|
FloatLike,
|
|
Optional,
|
|
ScaledConv2d,
|
|
ScaleGrad,
|
|
ScheduledFloat,
|
|
SwooshL,
|
|
SwooshR,
|
|
Whiten,
|
|
)
|
|
|
|
|
|
class ConvNeXt(nn.Module):
|
|
"""
|
|
Our interpretation of the ConvNeXt module as used in https://arxiv.org/pdf/2206.14747.pdf
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
hidden_ratio: int = 3,
|
|
kernel_size: Tuple[int, int] = (7, 7),
|
|
layerdrop_rate: FloatLike = None,
|
|
):
|
|
super().__init__()
|
|
self.padding = ((kernel_size[0] - 1) // 2, (kernel_size[1] - 1) // 2)
|
|
hidden_channels = channels * hidden_ratio
|
|
if layerdrop_rate is None:
|
|
layerdrop_rate = ScheduledFloat((0.0, 0.2), (20000.0, 0.015))
|
|
self.layerdrop_rate = layerdrop_rate
|
|
|
|
self.depthwise_conv = nn.Conv2d(
|
|
in_channels=channels,
|
|
out_channels=channels,
|
|
groups=channels,
|
|
kernel_size=kernel_size,
|
|
padding=self.padding,
|
|
)
|
|
|
|
self.pointwise_conv1 = nn.Conv2d(
|
|
in_channels=channels, out_channels=hidden_channels, kernel_size=1
|
|
)
|
|
|
|
self.hidden_balancer = Balancer(
|
|
hidden_channels,
|
|
channel_dim=1,
|
|
min_positive=0.3,
|
|
max_positive=1.0,
|
|
min_abs=0.75,
|
|
max_abs=5.0,
|
|
)
|
|
|
|
self.activation = SwooshL()
|
|
self.pointwise_conv2 = ScaledConv2d(
|
|
in_channels=hidden_channels,
|
|
out_channels=channels,
|
|
kernel_size=1,
|
|
initial_scale=0.01,
|
|
)
|
|
|
|
self.out_balancer = Balancer(
|
|
channels,
|
|
channel_dim=1,
|
|
min_positive=0.4,
|
|
max_positive=0.6,
|
|
min_abs=1.0,
|
|
max_abs=6.0,
|
|
)
|
|
self.out_whiten = Whiten(
|
|
num_groups=1,
|
|
whitening_limit=5.0,
|
|
prob=(0.025, 0.25),
|
|
grad_scale=0.01,
|
|
)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing() or not self.training:
|
|
return self.forward_internal(x)
|
|
layerdrop_rate = float(self.layerdrop_rate)
|
|
|
|
if layerdrop_rate != 0.0:
|
|
batch_size = x.shape[0]
|
|
mask = (
|
|
torch.rand((batch_size, 1, 1, 1), dtype=x.dtype, device=x.device)
|
|
> layerdrop_rate
|
|
)
|
|
else:
|
|
mask = None
|
|
# turns out this caching idea does not work with --world-size > 1
|
|
# return caching_eval(self.forward_internal, x, mask)
|
|
return self.forward_internal(x, mask)
|
|
|
|
def forward_internal(
|
|
self, x: Tensor, layer_skip_mask: Optional[Tensor] = None
|
|
) -> Tensor:
|
|
"""
|
|
x layout: (N, C, H, W), i.e. (batch_size, num_channels, num_frames, num_freqs)
|
|
|
|
The returned value has the same shape as x.
|
|
"""
|
|
bypass = x
|
|
x = self.depthwise_conv(x)
|
|
x = self.pointwise_conv1(x)
|
|
x = self.hidden_balancer(x)
|
|
x = self.activation(x)
|
|
x = self.pointwise_conv2(x)
|
|
|
|
if layer_skip_mask is not None:
|
|
x = x * layer_skip_mask
|
|
|
|
x = bypass + x
|
|
x = self.out_balancer(x)
|
|
|
|
if x.requires_grad:
|
|
x = x.transpose(1, 3) # (N, W, H, C); need channel dim to be last
|
|
x = self.out_whiten(x)
|
|
x = x.transpose(1, 3) # (N, C, H, W)
|
|
|
|
return x
|
|
|
|
def streaming_forward(
|
|
self,
|
|
x: Tensor,
|
|
cached_left_pad: Tensor,
|
|
) -> Tuple[Tensor, Tensor]:
|
|
"""
|
|
Args:
|
|
x layout: (N, C, H, W), i.e. (batch_size, num_channels, num_frames, num_freqs)
|
|
cached_left_pad: (batch_size, num_channels, left_pad, num_freqs)
|
|
|
|
Returns:
|
|
- The returned value has the same shape as x.
|
|
- Updated cached_left_pad.
|
|
"""
|
|
padding = self.padding
|
|
|
|
# The length without right padding for depth-wise conv
|
|
T = x.size(2) - padding[0]
|
|
|
|
bypass = x[:, :, :T, :]
|
|
|
|
# Pad left side
|
|
assert cached_left_pad.size(2) == padding[0], (
|
|
cached_left_pad.size(2),
|
|
padding[0],
|
|
)
|
|
x = torch.cat([cached_left_pad, x], dim=2)
|
|
# Update cached left padding
|
|
cached_left_pad = x[:, :, T : padding[0] + T, :]
|
|
|
|
# depthwise_conv
|
|
x = torch.nn.functional.conv2d(
|
|
x,
|
|
weight=self.depthwise_conv.weight,
|
|
bias=self.depthwise_conv.bias,
|
|
padding=(0, padding[1]),
|
|
groups=self.depthwise_conv.groups,
|
|
)
|
|
x = self.pointwise_conv1(x)
|
|
x = self.hidden_balancer(x)
|
|
x = self.activation(x)
|
|
x = self.pointwise_conv2(x)
|
|
|
|
x = bypass + x
|
|
return x, cached_left_pad
|
|
|
|
|
|
class Conv2dSubsampling(nn.Module):
|
|
"""Convolutional 2D subsampling (to 1/2 length).
|
|
|
|
Convert an input of shape (N, T, idim) to an output
|
|
with shape (N, T', odim), where
|
|
T' = (T-3)//2 - 2 == (T-7)//2
|
|
|
|
It is based on
|
|
https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/transformer/subsampling.py # noqa
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
layer1_channels: int = 8,
|
|
layer2_channels: int = 32,
|
|
layer3_channels: int = 128,
|
|
dropout: FloatLike = 0.1,
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
in_channels:
|
|
Number of channels in. The input shape is (N, T, in_channels).
|
|
Caution: It requires: T >=7, in_channels >=7
|
|
out_channels
|
|
Output dim. The output shape is (N, (T-3)//2, out_channels)
|
|
layer1_channels:
|
|
Number of channels in layer1
|
|
layer1_channels:
|
|
Number of channels in layer2
|
|
bottleneck:
|
|
bottleneck dimension for 1d squeeze-excite
|
|
"""
|
|
assert in_channels >= 7
|
|
super().__init__()
|
|
|
|
# The ScaleGrad module is there to prevent the gradients
|
|
# w.r.t. the weight or bias of the first Conv2d module in self.conv from
|
|
# exceeding the range of fp16 when using automatic mixed precision (amp)
|
|
# training. (The second one is necessary to stop its bias from getting
|
|
# a too-large gradient).
|
|
|
|
self.conv = nn.Sequential(
|
|
nn.Conv2d(
|
|
in_channels=1,
|
|
out_channels=layer1_channels,
|
|
kernel_size=3,
|
|
padding=(0, 1), # (time, freq)
|
|
),
|
|
ScaleGrad(0.2),
|
|
Balancer(layer1_channels, channel_dim=1, max_abs=1.0),
|
|
SwooshR(),
|
|
nn.Conv2d(
|
|
in_channels=layer1_channels,
|
|
out_channels=layer2_channels,
|
|
kernel_size=3,
|
|
stride=2,
|
|
padding=0,
|
|
),
|
|
Balancer(layer2_channels, channel_dim=1, max_abs=4.0),
|
|
SwooshR(),
|
|
nn.Conv2d(
|
|
in_channels=layer2_channels,
|
|
out_channels=layer3_channels,
|
|
kernel_size=3,
|
|
stride=(1, 2), # (time, freq)
|
|
),
|
|
Balancer(layer3_channels, channel_dim=1, max_abs=4.0),
|
|
SwooshR(),
|
|
)
|
|
|
|
# just one convnext layer
|
|
self.convnext = ConvNeXt(layer3_channels, kernel_size=(7, 7))
|
|
|
|
# (in_channels-3)//4
|
|
self.out_width = (((in_channels - 1) // 2) - 1) // 2
|
|
self.layer3_channels = layer3_channels
|
|
|
|
self.out = nn.Linear(self.out_width * layer3_channels, out_channels)
|
|
# use a larger than normal grad_scale on this whitening module; there is
|
|
# only one such module, so there is not a concern about adding together
|
|
# many copies of this extra gradient term.
|
|
self.out_whiten = Whiten(
|
|
num_groups=1,
|
|
whitening_limit=ScheduledFloat((0.0, 4.0), (20000.0, 8.0), default=4.0),
|
|
prob=(0.025, 0.25),
|
|
grad_scale=0.02,
|
|
)
|
|
|
|
# max_log_eps=0.0 is to prevent both eps and the output of self.out from
|
|
# getting large, there is an unnecessary degree of freedom.
|
|
self.out_norm = BiasNorm(out_channels)
|
|
self.dropout = Dropout3(dropout, shared_dim=1)
|
|
|
|
def forward(
|
|
self, x: torch.Tensor, x_lens: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Subsample x.
|
|
|
|
Args:
|
|
x:
|
|
Its shape is (N, T, idim).
|
|
x_lens:
|
|
A tensor of shape (batch_size,) containing the number of frames in
|
|
|
|
Returns:
|
|
- a tensor of shape (N, (T-7)//2, odim)
|
|
- output lengths, of shape (batch_size,)
|
|
"""
|
|
# On entry, x is (N, T, idim)
|
|
x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W)
|
|
# scaling x by 0.1 allows us to use a larger grad-scale in fp16 "amp" (automatic mixed precision)
|
|
# training, since the weights in the first convolution are otherwise the limiting factor for getting infinite
|
|
# gradients.
|
|
x = self.conv(x)
|
|
x = self.convnext(x)
|
|
|
|
# Now x is of shape (N, odim, (T-7)//2, (idim-3)//4)
|
|
b, c, t, f = x.size()
|
|
|
|
x = x.transpose(1, 2).reshape(b, t, c * f)
|
|
# now x: (N, (T-7)//2, out_width * layer3_channels))
|
|
|
|
x = self.out(x)
|
|
# Now x is of shape (N, (T-7)//2, odim)
|
|
x = self.out_whiten(x)
|
|
x = self.out_norm(x)
|
|
x = self.dropout(x)
|
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
x_lens = (x_lens - 7) // 2
|
|
else:
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
x_lens = (x_lens - 7) // 2
|
|
assert x.size(1) == x_lens.max().item(), (x.size(1), x_lens.max())
|
|
|
|
return x, x_lens
|
|
|
|
def streaming_forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_lens: torch.Tensor,
|
|
cached_left_pad: Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Subsample x.
|
|
|
|
Args:
|
|
x:
|
|
Its shape is (N, T, idim).
|
|
x_lens:
|
|
A tensor of shape (batch_size,) containing the number of frames in
|
|
|
|
Returns:
|
|
- a tensor of shape (N, (T-7)//2, odim)
|
|
- output lengths, of shape (batch_size,)
|
|
- updated cache
|
|
"""
|
|
# On entry, x is (N, T, idim)
|
|
x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W)
|
|
|
|
# T' = (T-7)//2
|
|
x = self.conv(x)
|
|
|
|
# T' = (T-7)//2-3
|
|
x, cached_left_pad = self.convnext.streaming_forward(
|
|
x, cached_left_pad=cached_left_pad
|
|
)
|
|
|
|
# Now x is of shape (N, odim, T', ((idim-1)//2 - 1)//2)
|
|
b, c, t, f = x.size()
|
|
|
|
x = x.transpose(1, 2).reshape(b, t, c * f)
|
|
# now x: (N, T', out_width * layer3_channels))
|
|
|
|
x = self.out(x)
|
|
# Now x is of shape (N, T', odim)
|
|
x = self.out_norm(x)
|
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
assert self.convnext.padding[0] == 3
|
|
# The ConvNeXt module needs 3 frames of right padding after subsampling
|
|
x_lens = (x_lens - 7) // 2 - 3
|
|
else:
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
# The ConvNeXt module needs 3 frames of right padding after subsampling
|
|
assert self.convnext.padding[0] == 3
|
|
x_lens = (x_lens - 7) // 2 - 3
|
|
|
|
assert x.size(1) == x_lens.max().item(), (x.shape, x_lens.max())
|
|
|
|
return x, x_lens, cached_left_pad
|
|
|
|
@torch.jit.export
|
|
def get_init_states(
|
|
self,
|
|
batch_size: int = 1,
|
|
device: torch.device = torch.device("cpu"),
|
|
) -> Tensor:
|
|
"""Get initial states for Conv2dSubsampling module.
|
|
It is the cached left padding for ConvNeXt module,
|
|
of shape (batch_size, num_channels, left_pad, num_freqs)
|
|
"""
|
|
left_pad = self.convnext.padding[0]
|
|
freq = self.out_width
|
|
channels = self.layer3_channels
|
|
cached_embed_left_pad = torch.zeros(batch_size, channels, left_pad, freq).to(
|
|
device
|
|
)
|
|
|
|
return cached_embed_left_pad
|