mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* copy files * update train.py * small fixes * Add decode.py * Fix dataloader in decode.py * add blank penalty * Add blank-penalty to other decoding method * Minor fixes * add zipformer2 recipe * Minor fixes * Remove pruned7 * export and test models * Replace bpe with tokens in export.py and pretrain.py * Minor fixes * Minor fixes * Minor fixes * Fix export * Update results * Fix zipformer-ctc * Fix ci * Fix ci * Fix CI * Fix CI --------- Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
274 lines
7.9 KiB
Python
Executable File
274 lines
7.9 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# flake8: noqa
|
|
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This script loads torchscript models exported by `torch.jit.script()`
|
|
and uses them to decode waves.
|
|
You can use the following command to get the exported models:
|
|
|
|
./zipformer/export.py \
|
|
--exp-dir ./zipformer/exp \
|
|
--causal 1 \
|
|
--chunk-size 16 \
|
|
--left-context-frames 128 \
|
|
--tokens data/lang_bpe_500/tokens.txt \
|
|
--epoch 30 \
|
|
--avg 9 \
|
|
--jit 1
|
|
|
|
Usage of this script:
|
|
|
|
./zipformer/jit_pretrained_streaming.py \
|
|
--nn-model-filename ./zipformer/exp-causal/jit_script_chunk_16_left_128.pt \
|
|
--tokens ./data/lang_bpe_500/tokens.txt \
|
|
/path/to/foo.wav \
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
from typing import List, Optional
|
|
|
|
import k2
|
|
import kaldifeat
|
|
import torch
|
|
import torchaudio
|
|
from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--nn-model-filename",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the torchscript model jit_script.pt",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tokens",
|
|
type=str,
|
|
help="""Path to tokens.txt.""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--sample-rate",
|
|
type=int,
|
|
default=16000,
|
|
help="The sample rate of the input sound file",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"sound_file",
|
|
type=str,
|
|
help="The input sound file(s) to transcribe. "
|
|
"Supported formats are those supported by torchaudio.load(). "
|
|
"For example, wav and flac are supported. "
|
|
"The sample rate has to be 16kHz.",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def read_sound_files(
|
|
filenames: List[str], expected_sample_rate: float
|
|
) -> List[torch.Tensor]:
|
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
|
Args:
|
|
filenames:
|
|
A list of sound filenames.
|
|
expected_sample_rate:
|
|
The expected sample rate of the sound files.
|
|
Returns:
|
|
Return a list of 1-D float32 torch tensors.
|
|
"""
|
|
ans = []
|
|
for f in filenames:
|
|
wave, sample_rate = torchaudio.load(f)
|
|
assert (
|
|
sample_rate == expected_sample_rate
|
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
|
# We use only the first channel
|
|
ans.append(wave[0])
|
|
return ans
|
|
|
|
|
|
def greedy_search(
|
|
decoder: torch.jit.ScriptModule,
|
|
joiner: torch.jit.ScriptModule,
|
|
encoder_out: torch.Tensor,
|
|
decoder_out: Optional[torch.Tensor] = None,
|
|
hyp: Optional[List[int]] = None,
|
|
device: torch.device = torch.device("cpu"),
|
|
):
|
|
assert encoder_out.ndim == 2
|
|
context_size = decoder.context_size
|
|
blank_id = decoder.blank_id
|
|
|
|
if decoder_out is None:
|
|
assert hyp is None, hyp
|
|
hyp = [blank_id] * context_size
|
|
decoder_input = torch.tensor(hyp, dtype=torch.int32, device=device).unsqueeze(0)
|
|
# decoder_input.shape (1,, 1 context_size)
|
|
decoder_out = decoder(decoder_input, torch.tensor([False])).squeeze(1)
|
|
else:
|
|
assert decoder_out.ndim == 2
|
|
assert hyp is not None, hyp
|
|
|
|
T = encoder_out.size(0)
|
|
for i in range(T):
|
|
cur_encoder_out = encoder_out[i : i + 1]
|
|
joiner_out = joiner(cur_encoder_out, decoder_out).squeeze(0)
|
|
y = joiner_out.argmax(dim=0).item()
|
|
|
|
if y != blank_id:
|
|
hyp.append(y)
|
|
decoder_input = hyp[-context_size:]
|
|
|
|
decoder_input = torch.tensor(
|
|
decoder_input, dtype=torch.int32, device=device
|
|
).unsqueeze(0)
|
|
decoder_out = decoder(decoder_input, torch.tensor([False])).squeeze(1)
|
|
|
|
return hyp, decoder_out
|
|
|
|
|
|
def create_streaming_feature_extractor(sample_rate) -> OnlineFeature:
|
|
"""Create a CPU streaming feature extractor.
|
|
|
|
At present, we assume it returns a fbank feature extractor with
|
|
fixed options. In the future, we will support passing in the options
|
|
from outside.
|
|
|
|
Returns:
|
|
Return a CPU streaming feature extractor.
|
|
"""
|
|
opts = FbankOptions()
|
|
opts.device = "cpu"
|
|
opts.frame_opts.dither = 0
|
|
opts.frame_opts.snip_edges = False
|
|
opts.frame_opts.samp_freq = sample_rate
|
|
opts.mel_opts.num_bins = 80
|
|
return OnlineFbank(opts)
|
|
|
|
|
|
@torch.no_grad()
|
|
def main():
|
|
parser = get_parser()
|
|
args = parser.parse_args()
|
|
logging.info(vars(args))
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", 0)
|
|
|
|
logging.info(f"device: {device}")
|
|
|
|
model = torch.jit.load(args.nn_model_filename)
|
|
model.eval()
|
|
model.to(device)
|
|
|
|
encoder = model.encoder
|
|
decoder = model.decoder
|
|
joiner = model.joiner
|
|
|
|
token_table = k2.SymbolTable.from_file(args.tokens)
|
|
context_size = decoder.context_size
|
|
|
|
logging.info("Constructing Fbank computer")
|
|
online_fbank = create_streaming_feature_extractor(args.sample_rate)
|
|
|
|
logging.info(f"Reading sound files: {args.sound_file}")
|
|
wave_samples = read_sound_files(
|
|
filenames=[args.sound_file],
|
|
expected_sample_rate=args.sample_rate,
|
|
)[0]
|
|
logging.info(wave_samples.shape)
|
|
|
|
logging.info("Decoding started")
|
|
|
|
chunk_length = encoder.chunk_size * 2
|
|
T = chunk_length + encoder.pad_length
|
|
|
|
logging.info(f"chunk_length: {chunk_length}")
|
|
logging.info(f"T: {T}")
|
|
|
|
states = encoder.get_init_states(device=device)
|
|
|
|
tail_padding = torch.zeros(int(0.3 * args.sample_rate), dtype=torch.float32)
|
|
|
|
wave_samples = torch.cat([wave_samples, tail_padding])
|
|
|
|
chunk = int(0.25 * args.sample_rate) # 0.2 second
|
|
num_processed_frames = 0
|
|
|
|
hyp = None
|
|
decoder_out = None
|
|
|
|
start = 0
|
|
while start < wave_samples.numel():
|
|
logging.info(f"{start}/{wave_samples.numel()}")
|
|
end = min(start + chunk, wave_samples.numel())
|
|
samples = wave_samples[start:end]
|
|
start += chunk
|
|
online_fbank.accept_waveform(
|
|
sampling_rate=args.sample_rate,
|
|
waveform=samples,
|
|
)
|
|
while online_fbank.num_frames_ready - num_processed_frames >= T:
|
|
frames = []
|
|
for i in range(T):
|
|
frames.append(online_fbank.get_frame(num_processed_frames + i))
|
|
frames = torch.cat(frames, dim=0).to(device).unsqueeze(0)
|
|
x_lens = torch.tensor([T], dtype=torch.int32, device=device)
|
|
encoder_out, out_lens, states = encoder(
|
|
features=frames,
|
|
feature_lengths=x_lens,
|
|
states=states,
|
|
)
|
|
num_processed_frames += chunk_length
|
|
|
|
hyp, decoder_out = greedy_search(
|
|
decoder, joiner, encoder_out.squeeze(0), decoder_out, hyp, device=device
|
|
)
|
|
|
|
text = ""
|
|
for i in hyp[context_size:]:
|
|
text += token_table[i]
|
|
text = text.replace("▁", " ").strip()
|
|
|
|
logging.info(args.sound_file)
|
|
logging.info(text)
|
|
|
|
logging.info("Decoding Done")
|
|
|
|
|
|
torch.set_num_threads(4)
|
|
torch.set_num_interop_threads(1)
|
|
torch._C._jit_set_profiling_executor(False)
|
|
torch._C._jit_set_profiling_mode(False)
|
|
torch._C._set_graph_executor_optimize(False)
|
|
if __name__ == "__main__":
|
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
main()
|