#!/usr/bin/env python3 # flake8: noqa # Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script loads torchscript models exported by `torch.jit.script()` and uses them to decode waves. You can use the following command to get the exported models: ./zipformer/export.py \ --exp-dir ./zipformer/exp \ --causal 1 \ --chunk-size 16 \ --left-context-frames 128 \ --tokens data/lang_bpe_500/tokens.txt \ --epoch 30 \ --avg 9 \ --jit 1 Usage of this script: ./zipformer/jit_pretrained_streaming.py \ --nn-model-filename ./zipformer/exp-causal/jit_script_chunk_16_left_128.pt \ --tokens ./data/lang_bpe_500/tokens.txt \ /path/to/foo.wav \ """ import argparse import logging import math from typing import List, Optional import k2 import kaldifeat import torch import torchaudio from kaldifeat import FbankOptions, OnlineFbank, OnlineFeature from torch.nn.utils.rnn import pad_sequence def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--nn-model-filename", type=str, required=True, help="Path to the torchscript model jit_script.pt", ) parser.add_argument( "--tokens", type=str, help="""Path to tokens.txt.""", ) parser.add_argument( "--sample-rate", type=int, default=16000, help="The sample rate of the input sound file", ) parser.add_argument( "sound_file", type=str, help="The input sound file(s) to transcribe. " "Supported formats are those supported by torchaudio.load(). " "For example, wav and flac are supported. " "The sample rate has to be 16kHz.", ) return parser def read_sound_files( filenames: List[str], expected_sample_rate: float ) -> List[torch.Tensor]: """Read a list of sound files into a list 1-D float32 torch tensors. Args: filenames: A list of sound filenames. expected_sample_rate: The expected sample rate of the sound files. Returns: Return a list of 1-D float32 torch tensors. """ ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) assert ( sample_rate == expected_sample_rate ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans def greedy_search( decoder: torch.jit.ScriptModule, joiner: torch.jit.ScriptModule, encoder_out: torch.Tensor, decoder_out: Optional[torch.Tensor] = None, hyp: Optional[List[int]] = None, device: torch.device = torch.device("cpu"), ): assert encoder_out.ndim == 2 context_size = decoder.context_size blank_id = decoder.blank_id if decoder_out is None: assert hyp is None, hyp hyp = [blank_id] * context_size decoder_input = torch.tensor(hyp, dtype=torch.int32, device=device).unsqueeze(0) # decoder_input.shape (1,, 1 context_size) decoder_out = decoder(decoder_input, torch.tensor([False])).squeeze(1) else: assert decoder_out.ndim == 2 assert hyp is not None, hyp T = encoder_out.size(0) for i in range(T): cur_encoder_out = encoder_out[i : i + 1] joiner_out = joiner(cur_encoder_out, decoder_out).squeeze(0) y = joiner_out.argmax(dim=0).item() if y != blank_id: hyp.append(y) decoder_input = hyp[-context_size:] decoder_input = torch.tensor( decoder_input, dtype=torch.int32, device=device ).unsqueeze(0) decoder_out = decoder(decoder_input, torch.tensor([False])).squeeze(1) return hyp, decoder_out def create_streaming_feature_extractor(sample_rate) -> OnlineFeature: """Create a CPU streaming feature extractor. At present, we assume it returns a fbank feature extractor with fixed options. In the future, we will support passing in the options from outside. Returns: Return a CPU streaming feature extractor. """ opts = FbankOptions() opts.device = "cpu" opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = sample_rate opts.mel_opts.num_bins = 80 return OnlineFbank(opts) @torch.no_grad() def main(): parser = get_parser() args = parser.parse_args() logging.info(vars(args)) device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"device: {device}") model = torch.jit.load(args.nn_model_filename) model.eval() model.to(device) encoder = model.encoder decoder = model.decoder joiner = model.joiner token_table = k2.SymbolTable.from_file(args.tokens) context_size = decoder.context_size logging.info("Constructing Fbank computer") online_fbank = create_streaming_feature_extractor(args.sample_rate) logging.info(f"Reading sound files: {args.sound_file}") wave_samples = read_sound_files( filenames=[args.sound_file], expected_sample_rate=args.sample_rate, )[0] logging.info(wave_samples.shape) logging.info("Decoding started") chunk_length = encoder.chunk_size * 2 T = chunk_length + encoder.pad_length logging.info(f"chunk_length: {chunk_length}") logging.info(f"T: {T}") states = encoder.get_init_states(device=device) tail_padding = torch.zeros(int(0.3 * args.sample_rate), dtype=torch.float32) wave_samples = torch.cat([wave_samples, tail_padding]) chunk = int(0.25 * args.sample_rate) # 0.2 second num_processed_frames = 0 hyp = None decoder_out = None start = 0 while start < wave_samples.numel(): logging.info(f"{start}/{wave_samples.numel()}") end = min(start + chunk, wave_samples.numel()) samples = wave_samples[start:end] start += chunk online_fbank.accept_waveform( sampling_rate=args.sample_rate, waveform=samples, ) while online_fbank.num_frames_ready - num_processed_frames >= T: frames = [] for i in range(T): frames.append(online_fbank.get_frame(num_processed_frames + i)) frames = torch.cat(frames, dim=0).to(device).unsqueeze(0) x_lens = torch.tensor([T], dtype=torch.int32, device=device) encoder_out, out_lens, states = encoder( features=frames, feature_lengths=x_lens, states=states, ) num_processed_frames += chunk_length hyp, decoder_out = greedy_search( decoder, joiner, encoder_out.squeeze(0), decoder_out, hyp, device=device ) text = "" for i in hyp[context_size:]: text += token_table[i] text = text.replace("▁", " ").strip() logging.info(args.sound_file) logging.info(text) logging.info("Decoding Done") torch.set_num_threads(4) torch.set_num_interop_threads(1) torch._C._jit_set_profiling_executor(False) torch._C._jit_set_profiling_mode(False) torch._C._set_graph_executor_optimize(False) if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()