mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
* remove unnecessary changes * add AMI prepare scripts * add zipformer scripts for AMI * added logs and pretrained model * minor fix * remove unwanted changes * fix missing link * make suggested changes * update results
145 lines
4.4 KiB
Bash
Executable File
145 lines
4.4 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
set -eou pipefail
|
|
|
|
stage=-1
|
|
stop_stage=100
|
|
use_gss=true # Use GSS-based enhancement with MDM setting
|
|
|
|
# We assume dl_dir (download dir) contains the following
|
|
# directories and files. If not, they will be downloaded
|
|
# by this script automatically.
|
|
#
|
|
# - $dl_dir/amicorpus
|
|
# You can find audio and transcripts in this path.
|
|
#
|
|
# - $dl_dir/musan
|
|
# This directory contains the following directories downloaded from
|
|
# http://www.openslr.org/17/
|
|
#
|
|
# - music
|
|
# - noise
|
|
# - speech
|
|
#
|
|
# - $dl_dir/{LDC2004S13,LDC2005S13,LDC2004T19,LDC2005T19}
|
|
# These contain the Fisher English audio and transcripts. We will
|
|
# only use the transcripts as extra LM training data (similar to Kaldi).
|
|
#
|
|
dl_dir=$PWD/download
|
|
|
|
. shared/parse_options.sh || exit 1
|
|
|
|
# All files generated by this script are saved in "data".
|
|
# You can safely remove "data" and rerun this script to regenerate it.
|
|
mkdir -p data
|
|
vocab_size=500
|
|
|
|
log() {
|
|
# This function is from espnet
|
|
local fname=${BASH_SOURCE[1]##*/}
|
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
|
}
|
|
|
|
log "dl_dir: $dl_dir"
|
|
|
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
|
log "Stage 0: Download data"
|
|
|
|
# If you have pre-downloaded it to /path/to/amicorpus,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/amicorpus $dl_dir/amicorpus
|
|
#
|
|
if [ ! -d $dl_dir/amicorpus ]; then
|
|
lhotse download ami --mic ihm $dl_dir/amicorpus
|
|
lhotse download ami --mic mdm $dl_dir/amicorpus
|
|
fi
|
|
|
|
# If you have pre-downloaded it to /path/to/musan,
|
|
# you can create a symlink
|
|
#
|
|
# ln -sfv /path/to/musan $dl_dir/
|
|
#
|
|
if [ ! -d $dl_dir/musan ]; then
|
|
lhotse download musan $dl_dir
|
|
fi
|
|
fi
|
|
|
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
|
log "Stage 1: Prepare AMI manifests"
|
|
# We assume that you have downloaded the AMI corpus
|
|
# to $dl_dir/amicorpus. We perform text normalization for the transcripts.
|
|
mkdir -p data/manifests
|
|
for mic in ihm sdm mdm; do
|
|
lhotse prepare ami --mic $mic --partition full-corpus-asr --normalize-text kaldi \
|
|
--max-words-per-segment 30 $dl_dir/amicorpus data/manifests/
|
|
done
|
|
fi
|
|
|
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
|
log "Stage 2: Prepare musan manifest"
|
|
# We assume that you have downloaded the musan corpus
|
|
# to $dl_dir/musan
|
|
mkdir -p data/manifests
|
|
lhotse prepare musan $dl_dir/musan data/manifests
|
|
fi
|
|
|
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ] && [ $use_gss = true ]; then
|
|
log "Stage 3: Apply GSS enhancement on MDM data (this stage requires a GPU)"
|
|
# We assume that you have installed the GSS package: https://github.com/desh2608/gss
|
|
local/prepare_ami_gss.sh data/manifests exp/ami_gss
|
|
fi
|
|
|
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|
log "Stage 4: Compute fbank features for AMI"
|
|
mkdir -p data/fbank
|
|
python local/compute_fbank_ami.py
|
|
log "Combine features from train splits"
|
|
lhotse combine data/manifests/cuts_train_{ihm,ihm_rvb,sdm,gss}.jsonl.gz - | shuf |\
|
|
gzip -c > data/manifests/cuts_train_all.jsonl.gz
|
|
fi
|
|
|
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|
log "Stage 5: Compute fbank features for musan"
|
|
mkdir -p data/fbank
|
|
python local/compute_fbank_musan.py
|
|
fi
|
|
|
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
|
log "Stage 6: Dump transcripts for BPE model training."
|
|
mkdir -p data/lm
|
|
cat <(gunzip -c data/manifests/ami-sdm_supervisions_train.jsonl.gz | jq '.text' | sed 's:"::g')> data/lm/transcript_words.txt
|
|
fi
|
|
|
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
|
log "Stage 7: Prepare BPE based lang"
|
|
|
|
lang_dir=data/lang_bpe_${vocab_size}
|
|
mkdir -p $lang_dir
|
|
|
|
# Add special words to words.txt
|
|
echo "<eps> 0" > $lang_dir/words.txt
|
|
echo "!SIL 1" >> $lang_dir/words.txt
|
|
echo "<UNK> 2" >> $lang_dir/words.txt
|
|
|
|
# Add regular words to words.txt
|
|
cat data/lm/transcript_words.txt | grep -o -E '\w+' | sort -u | awk '{print $0,NR+2}' >> $lang_dir/words.txt
|
|
|
|
# Add remaining special word symbols expected by LM scripts.
|
|
num_words=$(cat $lang_dir/words.txt | wc -l)
|
|
echo "<s> ${num_words}" >> $lang_dir/words.txt
|
|
num_words=$(cat $lang_dir/words.txt | wc -l)
|
|
echo "</s> ${num_words}" >> $lang_dir/words.txt
|
|
num_words=$(cat $lang_dir/words.txt | wc -l)
|
|
echo "#0 ${num_words}" >> $lang_dir/words.txt
|
|
|
|
./local/train_bpe_model.py \
|
|
--lang-dir $lang_dir \
|
|
--vocab-size $vocab_size \
|
|
--transcript data/lm/transcript_words.txt
|
|
|
|
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
|
./local/prepare_lang_bpe.py --lang-dir $lang_dir
|
|
fi
|
|
fi
|