mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
[recipe] AMI Zipformer transducer (#698)
* remove unnecessary changes * add AMI prepare scripts * add zipformer scripts for AMI * added logs and pretrained model * minor fix * remove unwanted changes * fix missing link * make suggested changes * update results
This commit is contained in:
parent
4c636c2cff
commit
db75627e92
48
egs/ami/ASR/README.md
Normal file
48
egs/ami/ASR/README.md
Normal file
@ -0,0 +1,48 @@
|
||||
# AMI
|
||||
|
||||
This is an ASR recipe for the AMI corpus. AMI provides recordings from the speaker's
|
||||
headset and lapel microphones, and also 2 array microphones containing 8 channels each.
|
||||
We pool data in the following 4 ways and train a single model on the pooled data:
|
||||
|
||||
(i) individual headset microphone (IHM)
|
||||
(ii) IHM with simulated reverb
|
||||
(iii) Single distant microphone (SDM)
|
||||
(iv) GSS-enhanced array microphones
|
||||
|
||||
Speed perturbation and MUSAN noise augmentation are additionally performed on the pooled
|
||||
data. Here are the statistics of the combined training data:
|
||||
|
||||
```python
|
||||
>>> cuts_train.describe()
|
||||
Cuts count: 1222053
|
||||
Total duration (hh:mm:ss): 905:00:28
|
||||
Speech duration (hh:mm:ss): 905:00:28 (99.9%)
|
||||
Duration statistics (seconds):
|
||||
mean 2.7
|
||||
std 2.8
|
||||
min 0.0
|
||||
25% 0.6
|
||||
50% 1.6
|
||||
75% 3.8
|
||||
99% 12.3
|
||||
99.5% 13.9
|
||||
99.9% 18.4
|
||||
max 36.8
|
||||
```
|
||||
|
||||
**Note:** This recipe additionally uses [GSS](https://github.com/desh2608/gss) for enhancement
|
||||
of far-field array microphones, but this is optional (see `prepare.sh` for details).
|
||||
|
||||
## Performance Record
|
||||
|
||||
### pruned_transducer_stateless7
|
||||
|
||||
The following are decoded using `modified_beam_search`:
|
||||
|
||||
| Evaluation set | dev WER | test WER |
|
||||
|--------------------------|------------|---------|
|
||||
| IHM | 18.92 | 17.40 |
|
||||
| SDM | 31.25 | 32.21 |
|
||||
| MDM (GSS-enhanced) | 21.67 | 22.43 |
|
||||
|
||||
See [RESULTS](/egs/ami/ASR/RESULTS.md) for details.
|
92
egs/ami/ASR/RESULTS.md
Normal file
92
egs/ami/ASR/RESULTS.md
Normal file
@ -0,0 +1,92 @@
|
||||
## Results
|
||||
|
||||
### AMI training results (Pruned Transducer)
|
||||
|
||||
#### 2022-11-20
|
||||
|
||||
#### Zipformer (pruned_transducer_stateless7)
|
||||
|
||||
Zipformer encoder + non-current decoder. The decoder
|
||||
contains only an embedding layer, a Conv1d (with kernel size 2) and a linear
|
||||
layer (to transform tensor dim).
|
||||
|
||||
All the results below are using a single model that is trained by combining the following
|
||||
data: IHM, IHM+reverb, SDM, and GSS-enhanced MDM. Speed perturbation and MUSAN noise
|
||||
augmentation are applied on top of the pooled data.
|
||||
|
||||
**WERs for IHM:**
|
||||
|
||||
| | dev | test | comment |
|
||||
|---------------------------|------------|------------|------------------------------------------|
|
||||
| greedy search | 19.25 | 17.83 | --epoch 14 --avg 8 --max-duration 500 |
|
||||
| modified beam search | 18.92 | 17.40 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 |
|
||||
| fast beam search | 19.44 | 18.04 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 --max-contexts 4 --max-states 8 |
|
||||
|
||||
**WERs for SDM:**
|
||||
|
||||
| | dev | test | comment |
|
||||
|---------------------------|------------|------------|------------------------------------------|
|
||||
| greedy search | 31.32 | 32.38 | --epoch 14 --avg 8 --max-duration 500 |
|
||||
| modified beam search | 31.25 | 32.21 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 |
|
||||
| fast beam search | 31.11 | 32.10 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 --max-contexts 4 --max-states 8 |
|
||||
|
||||
**WERs for GSS-enhanced MDM:**
|
||||
|
||||
| | dev | test | comment |
|
||||
|---------------------------|------------|------------|------------------------------------------|
|
||||
| greedy search | 22.05 | 22.93 | --epoch 14 --avg 8 --max-duration 500 |
|
||||
| modified beam search | 21.67 | 22.43 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 |
|
||||
| fast beam search | 22.21 | 22.83 | --epoch 14 --avg 8 --max-duration 500 --beam-size 4 --max-contexts 4 --max-states 8 |
|
||||
|
||||
The training command for reproducing is given below:
|
||||
|
||||
```
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./pruned_transducer_stateless7/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 15 \
|
||||
--exp-dir pruned_transducer_stateless7/exp \
|
||||
--max-duration 150 \
|
||||
--max-cuts 150 \
|
||||
--prune-range 5 \
|
||||
--lr-factor 5 \
|
||||
--lm-scale 0.25 \
|
||||
--use-fp16 True
|
||||
```
|
||||
|
||||
The decoding command is:
|
||||
```
|
||||
# greedy search
|
||||
./pruned_transducer_stateless7/decode.py \
|
||||
--epoch 14 \
|
||||
--avg 8 \
|
||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||
--max-duration 500 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
# modified beam search
|
||||
./pruned_transducer_stateless7/decode.py \
|
||||
--iter 105000 \
|
||||
--avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||
--max-duration 500 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
# fast beam search
|
||||
./pruned_transducer_stateless7/decode.py \
|
||||
--iter 105000 \
|
||||
--avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--max-duration 500 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
```
|
||||
|
||||
Pretrained model is available at <https://huggingface.co/desh2608/icefall-asr-ami-pruned-transducer-stateless7>
|
||||
|
||||
The tensorboard training log can be found at
|
||||
<https://tensorboard.dev/experiment/VH10QOTBTbuYpWx994Onrg/#scalars>
|
0
egs/ami/ASR/local/__init__.py
Normal file
0
egs/ami/ASR/local/__init__.py
Normal file
194
egs/ami/ASR/local/compute_fbank_ami.py
Executable file
194
egs/ami/ASR/local/compute_fbank_ami.py
Executable file
@ -0,0 +1,194 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Johns Hopkins University (authors: Desh Raj)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the AMI dataset.
|
||||
For the training data, we pool together IHM, reverberated IHM, and GSS-enhanced
|
||||
audios. For the test data, we separately prepare IHM, SDM, and GSS-enhanced
|
||||
parts (which are the 3 evaluation settings).
|
||||
It looks for manifests in the directory data/manifests.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.multiprocessing
|
||||
from lhotse import CutSet, LilcomChunkyWriter
|
||||
from lhotse.features.kaldifeat import (
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
KaldifeatFrameOptions,
|
||||
KaldifeatMelOptions,
|
||||
)
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
torch.multiprocessing.set_sharing_strategy("file_system")
|
||||
|
||||
|
||||
def compute_fbank_ami():
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank")
|
||||
|
||||
sampling_rate = 16000
|
||||
num_mel_bins = 80
|
||||
|
||||
extractor = KaldifeatFbank(
|
||||
KaldifeatFbankConfig(
|
||||
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
|
||||
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
|
||||
device="cuda",
|
||||
)
|
||||
)
|
||||
|
||||
logging.info("Reading manifests")
|
||||
manifests_ihm = read_manifests_if_cached(
|
||||
dataset_parts=["train", "dev", "test"],
|
||||
output_dir=src_dir,
|
||||
prefix="ami-ihm",
|
||||
suffix="jsonl.gz",
|
||||
)
|
||||
manifests_sdm = read_manifests_if_cached(
|
||||
dataset_parts=["train", "dev", "test"],
|
||||
output_dir=src_dir,
|
||||
prefix="ami-sdm",
|
||||
suffix="jsonl.gz",
|
||||
)
|
||||
# For GSS we already have cuts so we read them directly.
|
||||
manifests_gss = read_manifests_if_cached(
|
||||
dataset_parts=["train", "dev", "test"],
|
||||
output_dir=src_dir,
|
||||
prefix="ami-gss",
|
||||
suffix="jsonl.gz",
|
||||
)
|
||||
|
||||
def _extract_feats(cuts: CutSet, storage_path: Path, manifest_path: Path) -> None:
|
||||
cuts = cuts + cuts.perturb_speed(0.9) + cuts.perturb_speed(1.1)
|
||||
_ = cuts.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=storage_path,
|
||||
manifest_path=manifest_path,
|
||||
batch_duration=5000,
|
||||
num_workers=8,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
|
||||
logging.info(
|
||||
"Preparing training cuts: IHM + reverberated IHM + SDM + GSS (optional)"
|
||||
)
|
||||
|
||||
logging.info("Processing train split IHM")
|
||||
cuts_ihm = (
|
||||
CutSet.from_manifests(**manifests_ihm["train"])
|
||||
.trim_to_supervisions(keep_overlapping=False, keep_all_channels=False)
|
||||
.modify_ids(lambda x: x + "-ihm")
|
||||
)
|
||||
_extract_feats(
|
||||
cuts_ihm,
|
||||
output_dir / "feats_train_ihm",
|
||||
src_dir / "cuts_train_ihm.jsonl.gz",
|
||||
)
|
||||
|
||||
logging.info("Processing train split IHM + reverberated IHM")
|
||||
cuts_ihm_rvb = cuts_ihm.reverb_rir()
|
||||
_extract_feats(
|
||||
cuts_ihm_rvb,
|
||||
output_dir / "feats_train_ihm_rvb",
|
||||
src_dir / "cuts_train_ihm_rvb.jsonl.gz",
|
||||
)
|
||||
|
||||
logging.info("Processing train split SDM")
|
||||
cuts_sdm = (
|
||||
CutSet.from_manifests(**manifests_sdm["train"])
|
||||
.trim_to_supervisions(keep_overlapping=False)
|
||||
.modify_ids(lambda x: x + "-sdm")
|
||||
)
|
||||
_extract_feats(
|
||||
cuts_sdm,
|
||||
output_dir / "feats_train_sdm",
|
||||
src_dir / "cuts_train_sdm.jsonl.gz",
|
||||
)
|
||||
|
||||
logging.info("Processing train split GSS")
|
||||
cuts_gss = (
|
||||
CutSet.from_manifests(**manifests_gss["train"])
|
||||
.trim_to_supervisions(keep_overlapping=False)
|
||||
.modify_ids(lambda x: x + "-gss")
|
||||
)
|
||||
_extract_feats(
|
||||
cuts_gss,
|
||||
output_dir / "feats_train_gss",
|
||||
src_dir / "cuts_train_gss.jsonl.gz",
|
||||
)
|
||||
|
||||
logging.info("Preparing test cuts: IHM, SDM, GSS (optional)")
|
||||
for split in ["dev", "test"]:
|
||||
logging.info(f"Processing {split} IHM")
|
||||
cuts_ihm = (
|
||||
CutSet.from_manifests(**manifests_ihm[split])
|
||||
.trim_to_supervisions(keep_overlapping=False, keep_all_channels=False)
|
||||
.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=output_dir / f"feats_{split}_ihm",
|
||||
manifest_path=src_dir / f"cuts_{split}_ihm.jsonl.gz",
|
||||
batch_duration=5000,
|
||||
num_workers=8,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
)
|
||||
logging.info(f"Processing {split} SDM")
|
||||
cuts_sdm = (
|
||||
CutSet.from_manifests(**manifests_sdm[split])
|
||||
.trim_to_supervisions(keep_overlapping=False)
|
||||
.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=output_dir / f"feats_{split}_sdm",
|
||||
manifest_path=src_dir / f"cuts_{split}_sdm.jsonl.gz",
|
||||
batch_duration=500,
|
||||
num_workers=4,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
)
|
||||
logging.info(f"Processing {split} GSS")
|
||||
cuts_gss = (
|
||||
CutSet.from_manifests(**manifests_gss[split])
|
||||
.trim_to_supervisions(keep_overlapping=False)
|
||||
.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=output_dir / f"feats_{split}_gss",
|
||||
manifest_path=src_dir / f"cuts_{split}_gss.jsonl.gz",
|
||||
batch_duration=500,
|
||||
num_workers=4,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
compute_fbank_ami()
|
114
egs/ami/ASR/local/compute_fbank_musan.py
Executable file
114
egs/ami/ASR/local/compute_fbank_musan.py
Executable file
@ -0,0 +1,114 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This file computes fbank features of the musan dataset.
|
||||
It looks for manifests in the directory data/manifests.
|
||||
|
||||
The generated fbank features are saved in data/fbank.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, LilcomChunkyWriter, combine
|
||||
from lhotse.features.kaldifeat import (
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
KaldifeatFrameOptions,
|
||||
KaldifeatMelOptions,
|
||||
)
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or
|
||||
# it wastes a lot of CPU and slow things down.
|
||||
# Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
def compute_fbank_musan():
|
||||
src_dir = Path("data/manifests")
|
||||
output_dir = Path("data/fbank")
|
||||
|
||||
sampling_rate = 16000
|
||||
num_mel_bins = 80
|
||||
|
||||
dataset_parts = (
|
||||
"music",
|
||||
"speech",
|
||||
"noise",
|
||||
)
|
||||
prefix = "musan"
|
||||
suffix = "jsonl.gz"
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=dataset_parts,
|
||||
output_dir=src_dir,
|
||||
prefix=prefix,
|
||||
suffix=suffix,
|
||||
)
|
||||
assert manifests is not None
|
||||
|
||||
assert len(manifests) == len(dataset_parts), (
|
||||
len(manifests),
|
||||
len(dataset_parts),
|
||||
list(manifests.keys()),
|
||||
dataset_parts,
|
||||
)
|
||||
|
||||
musan_cuts_path = src_dir / "musan_cuts.jsonl.gz"
|
||||
|
||||
if musan_cuts_path.is_file():
|
||||
logging.info(f"{musan_cuts_path} already exists - skipping")
|
||||
return
|
||||
|
||||
logging.info("Extracting features for Musan")
|
||||
|
||||
extractor = KaldifeatFbank(
|
||||
KaldifeatFbankConfig(
|
||||
frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate),
|
||||
mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins),
|
||||
device="cuda",
|
||||
)
|
||||
)
|
||||
|
||||
# create chunks of Musan with duration 5 - 10 seconds
|
||||
_ = (
|
||||
CutSet.from_manifests(
|
||||
recordings=combine(part["recordings"] for part in manifests.values())
|
||||
)
|
||||
.cut_into_windows(10.0)
|
||||
.filter(lambda c: c.duration > 5)
|
||||
.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=output_dir / "musan_feats",
|
||||
manifest_path=musan_cuts_path,
|
||||
batch_duration=500,
|
||||
num_workers=4,
|
||||
storage_type=LilcomChunkyWriter,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
compute_fbank_musan()
|
158
egs/ami/ASR/local/prepare_ami_enhanced.py
Normal file
158
egs/ami/ASR/local/prepare_ami_enhanced.py
Normal file
@ -0,0 +1,158 @@
|
||||
#!/usr/local/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
# Data preparation for AMI GSS-enhanced dataset.
|
||||
|
||||
import logging
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from pathlib import Path
|
||||
|
||||
from lhotse import Recording, RecordingSet, SupervisionSet
|
||||
from lhotse.qa import fix_manifests
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
from lhotse.utils import fastcopy
|
||||
from tqdm import tqdm
|
||||
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s %(levelname)-8s %(message)s",
|
||||
level=logging.INFO,
|
||||
datefmt="%Y-%m-%d %H:%M:%S",
|
||||
)
|
||||
|
||||
|
||||
def get_args():
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description="AMI enhanced dataset preparation.")
|
||||
parser.add_argument(
|
||||
"manifests_dir",
|
||||
type=Path,
|
||||
help="Path to directory containing AMI manifests.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"enhanced_dir",
|
||||
type=Path,
|
||||
help="Path to enhanced data directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-jobs",
|
||||
"-j",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of parallel jobs to run.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--min-segment-duration",
|
||||
"-d",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Minimum duration of a segment in seconds.",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def find_recording_and_create_new_supervision(enhanced_dir, supervision):
|
||||
"""
|
||||
Given a supervision (corresponding to original AMI recording), this function finds the
|
||||
enhanced recording correspoding to the supervision, and returns this recording and
|
||||
a new supervision whose start and end times are adjusted to match the enhanced recording.
|
||||
"""
|
||||
file_name = Path(
|
||||
f"{supervision.recording_id}-{supervision.speaker}-{int(100*supervision.start):06d}_{int(100*supervision.end):06d}.flac"
|
||||
)
|
||||
save_path = enhanced_dir / f"{supervision.recording_id}" / file_name
|
||||
if save_path.exists():
|
||||
recording = Recording.from_file(save_path)
|
||||
if recording.duration == 0:
|
||||
logging.warning(f"Skipping {save_path} which has duration 0 seconds.")
|
||||
return None
|
||||
|
||||
# Old supervision is wrt to the original recording, we create new supervision
|
||||
# wrt to the enhanced segment
|
||||
new_supervision = fastcopy(
|
||||
supervision,
|
||||
recording_id=recording.id,
|
||||
start=0,
|
||||
duration=recording.duration,
|
||||
)
|
||||
return recording, new_supervision
|
||||
else:
|
||||
logging.warning(f"{save_path} does not exist.")
|
||||
return None
|
||||
|
||||
|
||||
def main(args):
|
||||
# Get arguments
|
||||
manifests_dir = args.manifests_dir
|
||||
enhanced_dir = args.enhanced_dir
|
||||
|
||||
# Load manifests from cache if they exist (saves time)
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=["train", "dev", "test"],
|
||||
output_dir=manifests_dir,
|
||||
prefix="ami-sdm",
|
||||
suffix="jsonl.gz",
|
||||
)
|
||||
if not manifests:
|
||||
raise ValueError("AMI SDM manifests not found in {}".format(manifests_dir))
|
||||
|
||||
with ThreadPoolExecutor(args.num_jobs) as ex:
|
||||
for part in ["train", "dev", "test"]:
|
||||
logging.info(f"Processing {part}...")
|
||||
supervisions_orig = manifests[part]["supervisions"].filter(
|
||||
lambda s: s.duration >= args.min_segment_duration
|
||||
)
|
||||
# Remove TS3009d supervisions since they are not present in the enhanced data
|
||||
supervisions_orig = supervisions_orig.filter(
|
||||
lambda s: s.recording_id != "TS3009d"
|
||||
)
|
||||
futures = []
|
||||
|
||||
for supervision in tqdm(
|
||||
supervisions_orig,
|
||||
desc="Distributing tasks",
|
||||
):
|
||||
futures.append(
|
||||
ex.submit(
|
||||
find_recording_and_create_new_supervision,
|
||||
enhanced_dir,
|
||||
supervision,
|
||||
)
|
||||
)
|
||||
|
||||
recordings = []
|
||||
supervisions = []
|
||||
for future in tqdm(
|
||||
futures,
|
||||
total=len(futures),
|
||||
desc="Processing tasks",
|
||||
):
|
||||
result = future.result()
|
||||
if result is not None:
|
||||
recording, new_supervision = result
|
||||
recordings.append(recording)
|
||||
supervisions.append(new_supervision)
|
||||
|
||||
# Remove duplicates from the recordings
|
||||
recordings_nodup = {}
|
||||
for recording in recordings:
|
||||
if recording.id not in recordings_nodup:
|
||||
recordings_nodup[recording.id] = recording
|
||||
else:
|
||||
logging.warning("Recording {} is duplicated.".format(recording.id))
|
||||
recordings = RecordingSet.from_recordings(recordings_nodup.values())
|
||||
supervisions = SupervisionSet.from_segments(supervisions)
|
||||
|
||||
recordings, supervisions = fix_manifests(
|
||||
recordings=recordings, supervisions=supervisions
|
||||
)
|
||||
|
||||
logging.info(f"Writing {part} enhanced manifests")
|
||||
recordings.to_file(manifests_dir / f"ami-gss_recordings_{part}.jsonl.gz")
|
||||
supervisions.to_file(
|
||||
manifests_dir / f"ami-gss_supervisions_{part}.jsonl.gz"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
main(args)
|
98
egs/ami/ASR/local/prepare_ami_gss.sh
Executable file
98
egs/ami/ASR/local/prepare_ami_gss.sh
Executable file
@ -0,0 +1,98 @@
|
||||
#!/bin/bash
|
||||
# This script is used to run GSS-based enhancement on AMI data.
|
||||
set -euo pipefail
|
||||
nj=4
|
||||
stage=0
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
if [ $# != 2 ]; then
|
||||
echo "Wrong #arguments ($#, expected 2)"
|
||||
echo "Usage: local/prepare_ami_gss.sh [options] <data-dir> <exp-dir>"
|
||||
echo "e.g. local/prepare_ami_gss.sh data/manifests exp/ami_gss"
|
||||
echo "main options (for others, see top of script file)"
|
||||
echo " --nj <nj> # number of parallel jobs"
|
||||
echo " --stage <stage> # stage to start running from"
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
DATA_DIR=$1
|
||||
EXP_DIR=$2
|
||||
|
||||
mkdir -p $EXP_DIR
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
if [ $stage -le 1 ]; then
|
||||
log "Stage 1: Prepare cut sets"
|
||||
for part in train dev test; do
|
||||
lhotse cut simple \
|
||||
-r $DATA_DIR/ami-mdm_recordings_${part}.jsonl.gz \
|
||||
-s $DATA_DIR/ami-mdm_supervisions_${part}.jsonl.gz \
|
||||
$EXP_DIR/cuts_${part}.jsonl.gz
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ]; then
|
||||
log "Stage 2: Trim cuts to supervisions (1 cut per supervision segment)"
|
||||
for part in train dev test; do
|
||||
lhotse cut trim-to-supervisions --discard-overlapping \
|
||||
$EXP_DIR/cuts_${part}.jsonl.gz $EXP_DIR/cuts_per_segment_${part}.jsonl.gz
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ]; then
|
||||
log "Stage 3: Split manifests for multi-GPU processing (optional)"
|
||||
for part in train; do
|
||||
gss utils split $nj $EXP_DIR/cuts_per_segment_${part}.jsonl.gz \
|
||||
$EXP_DIR/cuts_per_segment_${part}_split$nj
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ]; then
|
||||
log "Stage 4: Enhance train segments using GSS (requires GPU)"
|
||||
# for train, we use smaller context and larger batches to speed-up processing
|
||||
for JOB in $(seq $nj); do
|
||||
gss enhance cuts $EXP_DIR/cuts_train.jsonl.gz \
|
||||
$EXP_DIR/cuts_per_segment_train_split$nj/cuts_per_segment_train.JOB.jsonl.gz $EXP_DIR/enhanced \
|
||||
--bss-iterations 10 \
|
||||
--context-duration 5.0 \
|
||||
--use-garbage-class \
|
||||
--channels 0,1,2,3,4,5,6,7 \
|
||||
--min-segment-length 0.05 \
|
||||
--max-segment-length 35.0 \
|
||||
--max-batch-duration 60.0 \
|
||||
--num-buckets 3 \
|
||||
--num-workers 2
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ]; then
|
||||
log "Stage 5: Enhance dev/test segments using GSS (using GPU)"
|
||||
# for dev/test, we use larger context and smaller batches to get better quality
|
||||
for part in dev test; do
|
||||
for JOB in $(seq $nj); do
|
||||
gss enhance cuts $EXP_DIR/cuts_${part}.jsonl.gz \
|
||||
$EXP_DIR/cuts_per_segment_${part}_split$nj/cuts_per_segment_${part}.JOB.jsonl.gz \
|
||||
$EXP_DIR/enhanced \
|
||||
--bss-iterations 10 \
|
||||
--context-duration 15.0 \
|
||||
--use-garbage-class \
|
||||
--channels 0,1,2,3,4,5,6,7 \
|
||||
--min-segment-length 0.05 \
|
||||
--max-segment-length 30.0 \
|
||||
--max-batch-duration 45.0 \
|
||||
--num-buckets 3 \
|
||||
--num-workers 2
|
||||
done
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ]; then
|
||||
log "Stage 6: Prepare manifests for GSS-enhanced data"
|
||||
python local/prepare_ami_enhanced.py $DATA_DIR $EXP_DIR/enhanced -j $nj --min-segment-duration 0.05
|
||||
fi
|
1
egs/ami/ASR/local/prepare_lang_bpe.py
Symbolic link
1
egs/ami/ASR/local/prepare_lang_bpe.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/prepare_lang_bpe.py
|
1
egs/ami/ASR/local/train_bpe_model.py
Symbolic link
1
egs/ami/ASR/local/train_bpe_model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/local/train_bpe_model.py
|
144
egs/ami/ASR/prepare.sh
Executable file
144
egs/ami/ASR/prepare.sh
Executable file
@ -0,0 +1,144 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
use_gss=true # Use GSS-based enhancement with MDM setting
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
# by this script automatically.
|
||||
#
|
||||
# - $dl_dir/amicorpus
|
||||
# You can find audio and transcripts in this path.
|
||||
#
|
||||
# - $dl_dir/musan
|
||||
# This directory contains the following directories downloaded from
|
||||
# http://www.openslr.org/17/
|
||||
#
|
||||
# - music
|
||||
# - noise
|
||||
# - speech
|
||||
#
|
||||
# - $dl_dir/{LDC2004S13,LDC2005S13,LDC2004T19,LDC2005T19}
|
||||
# These contain the Fisher English audio and transcripts. We will
|
||||
# only use the transcripts as extra LM training data (similar to Kaldi).
|
||||
#
|
||||
dl_dir=$PWD/download
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
vocab_size=500
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
log "dl_dir: $dl_dir"
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "Stage 0: Download data"
|
||||
|
||||
# If you have pre-downloaded it to /path/to/amicorpus,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/amicorpus $dl_dir/amicorpus
|
||||
#
|
||||
if [ ! -d $dl_dir/amicorpus ]; then
|
||||
lhotse download ami --mic ihm $dl_dir/amicorpus
|
||||
lhotse download ami --mic mdm $dl_dir/amicorpus
|
||||
fi
|
||||
|
||||
# If you have pre-downloaded it to /path/to/musan,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/musan $dl_dir/
|
||||
#
|
||||
if [ ! -d $dl_dir/musan ]; then
|
||||
lhotse download musan $dl_dir
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Prepare AMI manifests"
|
||||
# We assume that you have downloaded the AMI corpus
|
||||
# to $dl_dir/amicorpus. We perform text normalization for the transcripts.
|
||||
mkdir -p data/manifests
|
||||
for mic in ihm sdm mdm; do
|
||||
lhotse prepare ami --mic $mic --partition full-corpus-asr --normalize-text kaldi \
|
||||
--max-words-per-segment 30 $dl_dir/amicorpus data/manifests/
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Prepare musan manifest"
|
||||
# We assume that you have downloaded the musan corpus
|
||||
# to $dl_dir/musan
|
||||
mkdir -p data/manifests
|
||||
lhotse prepare musan $dl_dir/musan data/manifests
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ] && [ $use_gss = true ]; then
|
||||
log "Stage 3: Apply GSS enhancement on MDM data (this stage requires a GPU)"
|
||||
# We assume that you have installed the GSS package: https://github.com/desh2608/gss
|
||||
local/prepare_ami_gss.sh data/manifests exp/ami_gss
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Compute fbank features for AMI"
|
||||
mkdir -p data/fbank
|
||||
python local/compute_fbank_ami.py
|
||||
log "Combine features from train splits"
|
||||
lhotse combine data/manifests/cuts_train_{ihm,ihm_rvb,sdm,gss}.jsonl.gz - | shuf |\
|
||||
gzip -c > data/manifests/cuts_train_all.jsonl.gz
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Compute fbank features for musan"
|
||||
mkdir -p data/fbank
|
||||
python local/compute_fbank_musan.py
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
log "Stage 6: Dump transcripts for BPE model training."
|
||||
mkdir -p data/lm
|
||||
cat <(gunzip -c data/manifests/ami-sdm_supervisions_train.jsonl.gz | jq '.text' | sed 's:"::g')> data/lm/transcript_words.txt
|
||||
fi
|
||||
|
||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
log "Stage 7: Prepare BPE based lang"
|
||||
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
mkdir -p $lang_dir
|
||||
|
||||
# Add special words to words.txt
|
||||
echo "<eps> 0" > $lang_dir/words.txt
|
||||
echo "!SIL 1" >> $lang_dir/words.txt
|
||||
echo "<UNK> 2" >> $lang_dir/words.txt
|
||||
|
||||
# Add regular words to words.txt
|
||||
cat data/lm/transcript_words.txt | grep -o -E '\w+' | sort -u | awk '{print $0,NR+2}' >> $lang_dir/words.txt
|
||||
|
||||
# Add remaining special word symbols expected by LM scripts.
|
||||
num_words=$(cat $lang_dir/words.txt | wc -l)
|
||||
echo "<s> ${num_words}" >> $lang_dir/words.txt
|
||||
num_words=$(cat $lang_dir/words.txt | wc -l)
|
||||
echo "</s> ${num_words}" >> $lang_dir/words.txt
|
||||
num_words=$(cat $lang_dir/words.txt | wc -l)
|
||||
echo "#0 ${num_words}" >> $lang_dir/words.txt
|
||||
|
||||
./local/train_bpe_model.py \
|
||||
--lang-dir $lang_dir \
|
||||
--vocab-size $vocab_size \
|
||||
--transcript data/lm/transcript_words.txt
|
||||
|
||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||
./local/prepare_lang_bpe.py --lang-dir $lang_dir
|
||||
fi
|
||||
fi
|
430
egs/ami/ASR/pruned_transducer_stateless7/asr_datamodule.py
Normal file
430
egs/ami/ASR/pruned_transducer_stateless7/asr_datamodule.py
Normal file
@ -0,0 +1,430 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import re
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||
from lhotse.cut import Cut
|
||||
from lhotse.dataset import (
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
from tqdm import tqdm
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class _SeedWorkers:
|
||||
def __init__(self, seed: int):
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, worker_id: int):
|
||||
fix_random_seed(self.seed + worker_id)
|
||||
|
||||
|
||||
class AmiAsrDataModule:
|
||||
"""
|
||||
DataModule for k2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description=(
|
||||
"These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc."
|
||||
),
|
||||
)
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/manifests"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--enable-musan",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help=(
|
||||
"When enabled, select noise from MUSAN and mix it "
|
||||
"with training dataset. "
|
||||
),
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help=(
|
||||
"When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding."
|
||||
),
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help=(
|
||||
"Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch."
|
||||
),
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help=(
|
||||
"The amount of padding (in seconds) inserted between "
|
||||
"concatenated cuts. This padding is filled with noise when "
|
||||
"noise augmentation is used."
|
||||
),
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=100.0,
|
||||
help=(
|
||||
"Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM."
|
||||
),
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-cuts", type=int, default=None, help="Maximum cuts in a single batch."
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=50,
|
||||
help=(
|
||||
"The number of buckets for the BucketingSampler"
|
||||
"(you might want to increase it for larger datasets)."
|
||||
),
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help=(
|
||||
"When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available."
|
||||
),
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help=(
|
||||
"When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch."
|
||||
),
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=8,
|
||||
help=(
|
||||
"The number of training dataloader workers that " "collect the batches."
|
||||
),
|
||||
)
|
||||
group.add_argument(
|
||||
"--enable-spec-aug",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, use SpecAugment for training dataset.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--spec-aug-time-warp-factor",
|
||||
type=int,
|
||||
default=80,
|
||||
help=(
|
||||
"Used only when --enable-spec-aug is True. "
|
||||
"It specifies the factor for time warping in SpecAugment. "
|
||||
"Larger values mean more warping. "
|
||||
"A value less than 1 means to disable time warp."
|
||||
),
|
||||
)
|
||||
group.add_argument(
|
||||
"--ihm-only",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, only use IHM data for training.",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
logging.info("About to get Musan cuts")
|
||||
|
||||
transforms = []
|
||||
if self.args.enable_musan:
|
||||
logging.info("Enable MUSAN")
|
||||
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
|
||||
transforms.append(
|
||||
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable MUSAN")
|
||||
|
||||
if self.args.concatenate_cuts:
|
||||
logging.info(
|
||||
"Using cut concatenation with duration factor "
|
||||
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||
# different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
input_transforms = []
|
||||
if self.args.enable_spec_aug:
|
||||
logging.info("Enable SpecAugment")
|
||||
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
|
||||
input_transforms.append(
|
||||
SpecAugment(
|
||||
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||
num_frame_masks=2,
|
||||
features_mask_size=27,
|
||||
num_feature_masks=2,
|
||||
frames_mask_size=100,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logging.info("Disable SpecAugment")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
input_transforms=input_transforms,
|
||||
)
|
||||
else:
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_transforms=input_transforms,
|
||||
)
|
||||
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
max_cuts=self.args.max_cuts,
|
||||
shuffle=False,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=True,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
# 'seed' is derived from the current random state, which will have
|
||||
# previously been set in the main process.
|
||||
seed = torch.randint(0, 100000, ()).item()
|
||||
worker_init_fn = _SeedWorkers(seed)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
worker_init_fn=worker_init_fn,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
|
||||
transforms = []
|
||||
if self.args.concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||
if self.args.on_the_fly_feats
|
||||
else PrecomputedFeatures(),
|
||||
return_cuts=True,
|
||||
)
|
||||
sampler = DynamicBucketingSampler(
|
||||
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||
)
|
||||
logging.debug("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
def remove_short_cuts(self, cut: Cut) -> bool:
|
||||
"""
|
||||
See: https://github.com/k2-fsa/icefall/issues/500
|
||||
Basically, the zipformer model subsamples the input using the following formula:
|
||||
num_out_frames = (num_in_frames - 7)//2
|
||||
For num_out_frames to be at least 1, num_in_frames must be at least 9.
|
||||
"""
|
||||
return cut.duration >= 0.09
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self, sp: Optional[Any] = None) -> CutSet:
|
||||
logging.info("About to get AMI train cuts")
|
||||
|
||||
def _remove_short_and_long_utt(c: Cut):
|
||||
if c.duration < 0.2 or c.duration > 25.0:
|
||||
return False
|
||||
|
||||
# In pruned RNN-T, we require that T >= S
|
||||
# where T is the number of feature frames after subsampling
|
||||
# and S is the number of tokens in the utterance
|
||||
|
||||
# In ./zipformer.py, the conv module uses the following expression
|
||||
# for subsampling
|
||||
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||
tokens = sp.encode(c.supervisions[0].text, out_type=str)
|
||||
return T >= len(tokens)
|
||||
|
||||
if self.args.ihm_only:
|
||||
cuts_train = load_manifest_lazy(
|
||||
self.args.manifest_dir / "cuts_train_ihm.jsonl.gz"
|
||||
)
|
||||
else:
|
||||
cuts_train = load_manifest_lazy(
|
||||
self.args.manifest_dir / "cuts_train_all.jsonl.gz"
|
||||
)
|
||||
|
||||
return cuts_train.filter(_remove_short_and_long_utt)
|
||||
|
||||
@lru_cache()
|
||||
def dev_ihm_cuts(self) -> CutSet:
|
||||
logging.info("About to get AMI IHM dev cuts")
|
||||
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_dev_ihm.jsonl.gz")
|
||||
return cs.filter(self.remove_short_cuts)
|
||||
|
||||
@lru_cache()
|
||||
def dev_sdm_cuts(self) -> CutSet:
|
||||
logging.info("About to get AMI SDM dev cuts")
|
||||
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_dev_sdm.jsonl.gz")
|
||||
return cs.filter(self.remove_short_cuts)
|
||||
|
||||
@lru_cache()
|
||||
def dev_gss_cuts(self) -> CutSet:
|
||||
if not (self.args.manifest_dir / "cuts_dev_gss.jsonl.gz").exists():
|
||||
logging.info("No GSS dev cuts found")
|
||||
return None
|
||||
logging.info("About to get AMI GSS-enhanced dev cuts")
|
||||
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_dev_gss.jsonl.gz")
|
||||
return cs.filter(self.remove_short_cuts)
|
||||
|
||||
@lru_cache()
|
||||
def test_ihm_cuts(self) -> CutSet:
|
||||
logging.info("About to get AMI IHM test cuts")
|
||||
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_ihm.jsonl.gz")
|
||||
return cs.filter(self.remove_short_cuts)
|
||||
|
||||
@lru_cache()
|
||||
def test_sdm_cuts(self) -> CutSet:
|
||||
logging.info("About to get AMI SDM test cuts")
|
||||
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_sdm.jsonl.gz")
|
||||
return cs.filter(self.remove_short_cuts)
|
||||
|
||||
@lru_cache()
|
||||
def test_gss_cuts(self) -> CutSet:
|
||||
if not (self.args.manifest_dir / "cuts_test_gss.jsonl.gz").exists():
|
||||
logging.info("No GSS test cuts found")
|
||||
return None
|
||||
logging.info("About to get AMI GSS-enhanced test cuts")
|
||||
cs = load_manifest_lazy(self.args.manifest_dir / "cuts_test_gss.jsonl.gz")
|
||||
return cs.filter(self.remove_short_cuts)
|
1
egs/ami/ASR/pruned_transducer_stateless7/beam_search.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7/beam_search.py
|
747
egs/ami/ASR/pruned_transducer_stateless7/decode.py
Executable file
747
egs/ami/ASR/pruned_transducer_stateless7/decode.py
Executable file
@ -0,0 +1,747 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./pruned_transducer_stateless7/decode.py \
|
||||
--iter 105000 \
|
||||
--avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||
--max-duration 100 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search
|
||||
./pruned_transducer_stateless7/decode.py \
|
||||
--iter 105000 \
|
||||
--avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||
--max-duration 500 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./pruned_transducer_stateless7/decode.py \
|
||||
--iter 105000 \
|
||||
--avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless7/exp \
|
||||
--max-duration 500 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search
|
||||
./pruned_transducer_stateless7/decode.py \
|
||||
--iter 105000 \
|
||||
--avg 10 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--max-duration 500 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--max-states 8
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import sentencepiece as spm
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import AmiAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_nbest_LG,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall import NgramLm
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 0.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless2/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default="data/lang_bpe_500",
|
||||
help="The lang dir containing word table and LG graph",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- beam_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
- fast_beam_search_nbest
|
||||
- fast_beam_search_nbest_oracle
|
||||
- fast_beam_search_nbest_LG
|
||||
If you use fast_beam_search_nbest_LG, you have to specify
|
||||
`--lang-dir`, which should contain `LG.pt`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ngram-lm-scale",
|
||||
type=float,
|
||||
default=0.01,
|
||||
help="""
|
||||
Used only when --decoding_method is fast_beam_search_nbest_LG.
|
||||
It specifies the scale for n-gram LM scores.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=64,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Number of paths for nbest decoding.
|
||||
Used only when the decoding method is fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""Scale applied to lattice scores when computing nbest paths.
|
||||
Used only when the decoding method is fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = model.device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "fast_beam_search_nbest_LG":
|
||||
hyp_tokens = fast_beam_search_nbest_LG(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
nbest_scale=params.nbest_scale,
|
||||
)
|
||||
for hyp in hyp_tokens:
|
||||
hyps.append([word_table[i] for i in hyp])
|
||||
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search": hyps}
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
return {
|
||||
(
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}"
|
||||
): hyps
|
||||
}
|
||||
elif "fast_beam_search" in params.decoding_method:
|
||||
key = f"beam_{params.beam}_"
|
||||
key += f"max_contexts_{params.max_contexts}_"
|
||||
key += f"max_states_{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
key += f"_num_paths_{params.num_paths}_"
|
||||
key += f"nbest_scale_{params.nbest_scale}"
|
||||
if "LG" in params.decoding_method:
|
||||
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||
|
||||
return {key: hyps}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}": hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
sp:
|
||||
The BPE model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 100
|
||||
else:
|
||||
log_interval = 2
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
decoding_graph=decoding_graph,
|
||||
word_table=word_table,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
ref_words = ref_text.split()
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
test_set_cers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
wers_filename = (
|
||||
params.res_dir / f"wers-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(wers_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
# we also compute CER for AMI dataset.
|
||||
results_char = []
|
||||
for res in results:
|
||||
results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
|
||||
cers_filename = (
|
||||
params.res_dir / f"cers-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(cers_filename, "w") as f:
|
||||
cer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results_char, enable_log=True
|
||||
)
|
||||
test_set_cers[key] = cer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(wers_filename))
|
||||
|
||||
test_set_wers = {k: v for k, v in sorted(test_set_wers.items(), key=lambda x: x[1])}
|
||||
test_set_cers = {k: v for k, v in sorted(test_set_cers.items(), key=lambda x: x[1])}
|
||||
errs_info = (
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER\tCER", file=f)
|
||||
for key in test_set_wers:
|
||||
print(
|
||||
"{}\t{}\t{}".format(key, test_set_wers[key], test_set_cers[key]),
|
||||
file=f,
|
||||
)
|
||||
|
||||
s = "\nFor {}, WER/CER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key in test_set_wers:
|
||||
s += "{}\t{}\t{}{}\n".format(key, test_set_wers[key], test_set_cers[key], note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AmiAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"fast_beam_search",
|
||||
"fast_beam_search_nbest_LG",
|
||||
"modified_beam_search",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||
params.suffix += f"-num-paths-{params.num_paths}"
|
||||
if "LG" in params.decoding_method:
|
||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
sp = spm.SentencePieceProcessor()
|
||||
sp.load(f"{params.lang_dir}/bpe.model")
|
||||
|
||||
# <blk> is defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_transducer_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
word_table = lexicon.word_table
|
||||
lg_filename = params.lang_dir / "LG.pt"
|
||||
logging.info(f"Loading {lg_filename}")
|
||||
decoding_graph = k2.Fsa.from_dict(
|
||||
torch.load(lg_filename, map_location=device)
|
||||
)
|
||||
decoding_graph.scores *= params.ngram_lm_scale
|
||||
else:
|
||||
word_table = None
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
word_table = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
ami = AmiAsrDataModule(args)
|
||||
|
||||
dev_ihm_cuts = ami.dev_ihm_cuts()
|
||||
test_ihm_cuts = ami.test_ihm_cuts()
|
||||
dev_sdm_cuts = ami.dev_sdm_cuts()
|
||||
test_sdm_cuts = ami.test_sdm_cuts()
|
||||
dev_gss_cuts = ami.dev_gss_cuts()
|
||||
test_gss_cuts = ami.test_gss_cuts()
|
||||
|
||||
dev_ihm_dl = ami.test_dataloaders(dev_ihm_cuts)
|
||||
test_ihm_dl = ami.test_dataloaders(test_ihm_cuts)
|
||||
dev_sdm_dl = ami.test_dataloaders(dev_sdm_cuts)
|
||||
test_sdm_dl = ami.test_dataloaders(test_sdm_cuts)
|
||||
if dev_gss_cuts is not None:
|
||||
dev_gss_dl = ami.test_dataloaders(dev_gss_cuts)
|
||||
if test_gss_cuts is not None:
|
||||
test_gss_dl = ami.test_dataloaders(test_gss_cuts)
|
||||
|
||||
test_sets = {
|
||||
"dev_ihm": (dev_ihm_dl, dev_ihm_cuts),
|
||||
"test_ihm": (test_ihm_dl, test_ihm_cuts),
|
||||
"dev_sdm": (dev_sdm_dl, dev_sdm_cuts),
|
||||
"test_sdm": (test_sdm_dl, test_sdm_cuts),
|
||||
}
|
||||
if dev_gss_cuts is not None:
|
||||
test_sets["dev_gss"] = (dev_gss_dl, dev_gss_cuts)
|
||||
if test_gss_cuts is not None:
|
||||
test_sets["test_gss"] = (test_gss_dl, test_gss_cuts)
|
||||
|
||||
for test_set in test_sets:
|
||||
logging.info(f"Decoding {test_set}")
|
||||
dl, cuts = test_sets[test_set]
|
||||
results_dict = decode_dataset(
|
||||
dl=dl,
|
||||
params=params,
|
||||
model=model,
|
||||
sp=sp,
|
||||
word_table=word_table,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/ami/ASR/pruned_transducer_stateless7/decoder.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7/decoder.py
|
1
egs/ami/ASR/pruned_transducer_stateless7/encoder_interface.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7/encoder_interface.py
|
1
egs/ami/ASR/pruned_transducer_stateless7/export.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/export.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7/export.py
|
1
egs/ami/ASR/pruned_transducer_stateless7/joiner.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7/joiner.py
|
1
egs/ami/ASR/pruned_transducer_stateless7/model.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7/model.py
|
1
egs/ami/ASR/pruned_transducer_stateless7/optim.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7/optim.py
|
1
egs/ami/ASR/pruned_transducer_stateless7/scaling.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7/scaling.py
|
1
egs/ami/ASR/pruned_transducer_stateless7/scaling_converter.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7/scaling_converter.py
|
1184
egs/ami/ASR/pruned_transducer_stateless7/train.py
Executable file
1184
egs/ami/ASR/pruned_transducer_stateless7/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/ami/ASR/pruned_transducer_stateless7/zipformer.py
Symbolic link
1
egs/ami/ASR/pruned_transducer_stateless7/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/pruned_transducer_stateless7/zipformer.py
|
1
egs/ami/ASR/shared
Symbolic link
1
egs/ami/ASR/shared
Symbolic link
@ -0,0 +1 @@
|
||||
../../../icefall/shared
|
Loading…
x
Reference in New Issue
Block a user