icefall/egs/aishell4/ASR/prepare.sh
zr_jin d76c3fe472
Migrate zipformer model to other Chinese datasets (#1216)
added zipformer recipe for AISHELL-1
2023-10-24 16:24:46 +08:00

166 lines
4.8 KiB
Bash
Executable File

#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
stage=-1
stop_stage=100
perturb_speed=true
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/aishell4
# You can find four directories:train_S, train_M, train_L and test.
# You can download it from https://openslr.org/111/
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/aishell4,
# you can create a symlink
#
# ln -sfv /path/to/aishell4 $dl_dir/aishell4
#
if [ ! -f $dl_dir/aishell4/train_L ]; then
lhotse download aishell4 $dl_dir/aishell4
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/musan
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare aishell4 manifest"
# We assume that you have downloaded the aishell4 corpus
# to $dl_dir/aishell4
if [ ! -f data/manifests/aishell4/.manifests.done ]; then
mkdir -p data/manifests/aishell4
lhotse prepare aishell4 $dl_dir/aishell4 data/manifests/aishell4
touch data/manifests/aishell4/.manifests.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Process aishell4"
if [ ! -f data/fbank/aishell4/.fbank.done ]; then
mkdir -p data/fbank/aishell4
lhotse prepare aishell4 $dl_dir/aishell4 data/manifests/aishell4
touch data/fbank/aishell4/.fbank.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
if [ ! -f data/manifests/.musan_manifests.done ]; then
log "It may take 6 minutes"
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan_manifests.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
if [ ! -f data/fbank/.msuan.done ]; then
mkdir -p data/fbank
./local/compute_fbank_musan.py
touch data/fbank/.msuan.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Compute fbank for aishell4"
if [ ! -f data/fbank/.aishell4.done ]; then
mkdir -p data/fbank
./local/compute_fbank_aishell4.py --perturb-speed ${perturb_speed}
touch data/fbank/.aishell4.done
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare char based lang"
lang_char_dir=data/lang_char
mkdir -p $lang_char_dir
# Prepare text.
# Note: in Linux, you can install jq with the following command:
# wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
gunzip -c data/manifests/aishell4/aishell4_supervisions_train_S.jsonl.gz \
| jq ".text" | sed 's/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text_S
gunzip -c data/manifests/aishell4/aishell4_supervisions_train_M.jsonl.gz \
| jq ".text" | sed 's/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text_M
gunzip -c data/manifests/aishell4/aishell4_supervisions_train_L.jsonl.gz \
| jq ".text" | sed 's/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text_L
for r in text_S text_M text_L ; do
cat $lang_char_dir/$r >> $lang_char_dir/text_full
done
# Prepare text normalize
python ./local/text_normalize.py \
--input $lang_char_dir/text_full \
--output $lang_char_dir/text
# Prepare words segments
python ./local/text2segments.py \
--input $lang_char_dir/text \
--output $lang_char_dir/text_words_segmentation
cat $lang_char_dir/text_words_segmentation | sed "s/ /\n/g" \
| sort -u | sed "/^$/d" \
| uniq > $lang_char_dir/words_no_ids.txt
# Prepare words.txt
if [ ! -f $lang_char_dir/words.txt ]; then
./local/prepare_words.py \
--input-file $lang_char_dir/words_no_ids.txt \
--output-file $lang_char_dir/words.txt
fi
if [ ! -f $lang_char_dir/L_disambig.pt ]; then
./local/prepare_char.py
fi
fi