mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Migrate zipformer model to other Chinese datasets (#1216)
added zipformer recipe for AISHELL-1
This commit is contained in:
parent
3fb99400cf
commit
d76c3fe472
@ -18,8 +18,8 @@ log "Downloading pre-commputed fbank from $fbank_url"
|
||||
git clone https://huggingface.co/csukuangfj/aishell-test-dev-manifests
|
||||
ln -s $PWD/aishell-test-dev-manifests/data .
|
||||
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
repo_url=https://huggingface.co/csukuangfj/icefall-aishell-pruned-transducer-stateless3-2022-06-20
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
|
103
.github/scripts/run-aishell-zipformer-2023-10-24.sh
vendored
Executable file
103
.github/scripts/run-aishell-zipformer-2023-10-24.sh
vendored
Executable file
@ -0,0 +1,103 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
cd egs/aishell/ASR
|
||||
|
||||
git lfs install
|
||||
|
||||
fbank_url=https://huggingface.co/csukuangfj/aishell-test-dev-manifests
|
||||
log "Downloading pre-commputed fbank from $fbank_url"
|
||||
|
||||
git clone https://huggingface.co/csukuangfj/aishell-test-dev-manifests
|
||||
ln -s $PWD/aishell-test-dev-manifests/data .
|
||||
|
||||
log "======================="
|
||||
log "CI testing large model"
|
||||
repo_url=https://huggingface.co/zrjin/icefall-asr-aishell-zipformer-large-2023-10-24/
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
log "Display test files"
|
||||
tree $repo/
|
||||
ls -lh $repo/test_wavs/*.wav
|
||||
|
||||
for method in modified_beam_search greedy_search fast_beam_search; do
|
||||
log "$method"
|
||||
|
||||
./zipformer/pretrained.py \
|
||||
--method $method \
|
||||
--context-size 1 \
|
||||
--checkpoint $repo/exp/pretrained.pt \
|
||||
--tokens $repo/data/lang_char/tokens.txt \
|
||||
--num-encoder-layers 2,2,4,5,4,2 \
|
||||
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||
--encoder-dim 192,256,512,768,512,256 \
|
||||
--encoder-unmasked-dim 192,192,256,320,256,192 \
|
||||
$repo/test_wavs/BAC009S0764W0121.wav \
|
||||
$repo/test_wavs/BAC009S0764W0122.wav \
|
||||
$repo/test_wavs/BAC009S0764W0123.wav
|
||||
done
|
||||
|
||||
log "======================="
|
||||
log "CI testing medium model"
|
||||
repo_url=https://huggingface.co/zrjin/icefall-asr-aishell-zipformer-2023-10-24/
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
log "Display test files"
|
||||
tree $repo/
|
||||
ls -lh $repo/test_wavs/*.wav
|
||||
|
||||
|
||||
for method in modified_beam_search greedy_search fast_beam_search; do
|
||||
log "$method"
|
||||
|
||||
./zipformer/pretrained.py \
|
||||
--method $method \
|
||||
--context-size 1 \
|
||||
--checkpoint $repo/exp/pretrained.pt \
|
||||
--tokens $repo/data/lang_char/tokens.txt \
|
||||
$repo/test_wavs/BAC009S0764W0121.wav \
|
||||
$repo/test_wavs/BAC009S0764W0122.wav \
|
||||
$repo/test_wavs/BAC009S0764W0123.wav
|
||||
done
|
||||
|
||||
|
||||
log "======================="
|
||||
log "CI testing small model"
|
||||
repo_url=https://huggingface.co/zrjin/icefall-asr-aishell-zipformer-small-2023-10-24/
|
||||
log "Downloading pre-trained model from $repo_url"
|
||||
git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
|
||||
log "Display test files"
|
||||
tree $repo/
|
||||
ls -lh $repo/test_wavs/*.wav
|
||||
|
||||
|
||||
for method in modified_beam_search greedy_search fast_beam_search; do
|
||||
log "$method"
|
||||
|
||||
./zipformer/pretrained.py \
|
||||
--method $method \
|
||||
--context-size 1 \
|
||||
--checkpoint $repo/exp/pretrained.pt \
|
||||
--tokens $repo/data/lang_char/tokens.txt \
|
||||
--num-encoder-layers 2,2,2,2,2,2 \
|
||||
--feedforward-dim 512,768,768,768,768,768 \
|
||||
--encoder-dim 192,256,256,256,256,256 \
|
||||
--encoder-unmasked-dim 192,192,192,192,192,192 \
|
||||
$repo/test_wavs/BAC009S0764W0121.wav \
|
||||
$repo/test_wavs/BAC009S0764W0122.wav \
|
||||
$repo/test_wavs/BAC009S0764W0123.wav
|
||||
done
|
||||
|
95
.github/workflows/run-aishell-zipformer-2023-10-24.yml
vendored
Normal file
95
.github/workflows/run-aishell-zipformer-2023-10-24.yml
vendored
Normal file
@ -0,0 +1,95 @@
|
||||
# Copyright 2023 Zengrui Jin (Xiaomi Corp.)
|
||||
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: run-aishell-zipformer-2023-10-24
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
types: [labeled]
|
||||
|
||||
schedule:
|
||||
# minute (0-59)
|
||||
# hour (0-23)
|
||||
# day of the month (1-31)
|
||||
# month (1-12)
|
||||
# day of the week (0-6)
|
||||
# nightly build at 15:50 UTC time every day
|
||||
- cron: "50 15 * * *"
|
||||
|
||||
concurrency:
|
||||
group: run_aishell_zipformer_2023_10_24-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
run_aishell_zipformer_2023_10_24:
|
||||
if: github.event.label.name == 'ready' || github.event.label.name == 'zipformer' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-latest]
|
||||
python-version: [3.8]
|
||||
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: 'pip'
|
||||
cache-dependency-path: '**/requirements-ci.txt'
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: |
|
||||
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
|
||||
pip uninstall -y protobuf
|
||||
pip install --no-binary protobuf protobuf==3.20.*
|
||||
|
||||
- name: Cache kaldifeat
|
||||
id: my-cache
|
||||
uses: actions/cache@v2
|
||||
with:
|
||||
path: |
|
||||
~/tmp/kaldifeat
|
||||
key: cache-tmp-${{ matrix.python-version }}-2023-05-22
|
||||
|
||||
- name: Install kaldifeat
|
||||
if: steps.my-cache.outputs.cache-hit != 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
.github/scripts/install-kaldifeat.sh
|
||||
|
||||
- name: Inference with pre-trained model
|
||||
shell: bash
|
||||
env:
|
||||
GITHUB_EVENT_NAME: ${{ github.event_name }}
|
||||
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||
run: |
|
||||
sudo apt-get -qq install git-lfs tree
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
|
||||
|
||||
.github/scripts/run-aishell-zipformer-2023-10-24.sh
|
||||
|
||||
|
@ -7,6 +7,8 @@ set -eou pipefail
|
||||
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
perturb_speed=true
|
||||
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
@ -77,7 +79,7 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Compute fbank for aidatatang_200zh"
|
||||
if [ ! -f data/fbank/.aidatatang_200zh.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_aidatatang_200zh.py --perturb-speed True
|
||||
./local/compute_fbank_aidatatang_200zh.py --perturb-speed ${perturb_speed}
|
||||
touch data/fbank/.aidatatang_200zh.done
|
||||
fi
|
||||
fi
|
||||
|
@ -102,7 +102,7 @@ class Aidatatang_200zhAsrDataModule:
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
default=False,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
@ -289,6 +289,7 @@ class Aidatatang_200zhAsrDataModule:
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
drop_last=True,
|
||||
buffer_size=50000,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SimpleCutSampler.")
|
||||
|
@ -1,10 +1,12 @@
|
||||
|
||||
# Introduction
|
||||
|
||||
Please refer to <https://icefall.readthedocs.io/en/latest/recipes/Non-streaming-ASR/aishell/index.html>
|
||||
for how to run models in this recipe.
|
||||
Please refer to <https://k2-fsa.github.io/icefall/recipes/Non-streaming-ASR/aishell/index.html> for how to run models in this recipe.
|
||||
|
||||
Aishell is an open-source Chinese Mandarin speech corpus published by Beijing Shell Shell Technology Co., Ltd.
|
||||
400 people from different accent areas in China are invited to participate in the recording, which is conducted in a quiet indoor environment using high fidelity microphone and downsampled to 16kHz. The manual transcription accuracy is above 95%, through professional speech annotation and strict quality inspection. The data is free for academic use. We hope to provide moderate amount of data for new researchers in the field of speech recognition.
|
||||
|
||||
(From [Open Speech and Language Resources](https://www.openslr.org/33/))
|
||||
|
||||
# Transducers
|
||||
|
||||
|
@ -1,6 +1,162 @@
|
||||
## Results
|
||||
|
||||
### Aishell training result(Stateless Transducer)
|
||||
### Aishell training result (Stateless Transducer)
|
||||
|
||||
#### Zipformer (Non-streaming)
|
||||
|
||||
[./zipformer](./zipformer)
|
||||
|
||||
It's reworked Zipformer with Pruned RNNT loss.
|
||||
**Caution**: It uses `--context-size=1`.
|
||||
|
||||
##### normal-scaled model, number of model parameters: 73412551, i.e., 73.41 M
|
||||
|
||||
| | test | dev | comment |
|
||||
|------------------------|------|------|-----------------------------------------|
|
||||
| greedy search | 4.67 | 4.37 | --epoch 55 --avg 17 |
|
||||
| modified beam search | 4.40 | 4.13 | --epoch 55 --avg 17 |
|
||||
| fast beam search | 4.60 | 4.31 | --epoch 55 --avg 17 |
|
||||
|
||||
Command for training is:
|
||||
```bash
|
||||
./prepare.sh
|
||||
|
||||
export CUDA_VISIBLE_DEVICES="0,1"
|
||||
|
||||
./zipformer/train.py \
|
||||
--world-size 2 \
|
||||
--num-epochs 60 \
|
||||
--start-epoch 1 \
|
||||
--use-fp16 1 \
|
||||
--context-size 1 \
|
||||
--enable-musan 0 \
|
||||
--exp-dir zipformer/exp \
|
||||
--max-duration 1000 \
|
||||
--enable-musan 0 \
|
||||
--base-lr 0.045 \
|
||||
--lr-batches 7500 \
|
||||
--lr-epochs 18 \
|
||||
--spec-aug-time-warp-factor 20
|
||||
```
|
||||
|
||||
Command for decoding is:
|
||||
```bash
|
||||
for m in greedy_search modified_beam_search fast_beam_search ; do
|
||||
./zipformer/decode.py \
|
||||
--epoch 55 \
|
||||
--avg 17 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--context-size 1 \
|
||||
--decoding-method $m
|
||||
done
|
||||
```
|
||||
Pretrained models, training logs, decoding logs, tensorboard and decoding results
|
||||
are available at
|
||||
<https://huggingface.co/zrjin/icefall-asr-aishell-zipformer-2023-10-24>
|
||||
|
||||
|
||||
##### small-scaled model, number of model parameters: 30167139, i.e., 30.17 M
|
||||
|
||||
| | test | dev | comment |
|
||||
|------------------------|------|------|-----------------------------------------|
|
||||
| greedy search | 4.97 | 4.67 | --epoch 55 --avg 21 |
|
||||
| modified beam search | 4.67 | 4.40 | --epoch 55 --avg 21 |
|
||||
| fast beam search | 4.85 | 4.61 | --epoch 55 --avg 21 |
|
||||
|
||||
Command for training is:
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES="0,1"
|
||||
|
||||
./zipformer/train.py \
|
||||
--world-size 2 \
|
||||
--num-epochs 60 \
|
||||
--start-epoch 1 \
|
||||
--use-fp16 1 \
|
||||
--context-size 1 \
|
||||
--exp-dir zipformer/exp-small \
|
||||
--enable-musan 0 \
|
||||
--base-lr 0.045 \
|
||||
--lr-batches 7500 \
|
||||
--lr-epochs 18 \
|
||||
--spec-aug-time-warp-factor 20 \
|
||||
--num-encoder-layers 2,2,2,2,2,2 \
|
||||
--feedforward-dim 512,768,768,768,768,768 \
|
||||
--encoder-dim 192,256,256,256,256,256 \
|
||||
--encoder-unmasked-dim 192,192,192,192,192,192 \
|
||||
--max-duration 1200
|
||||
```
|
||||
|
||||
Command for decoding is:
|
||||
```bash
|
||||
for m in greedy_search modified_beam_search fast_beam_search ; do
|
||||
./zipformer/decode.py \
|
||||
--epoch 55 \
|
||||
--avg 21 \
|
||||
--exp-dir ./zipformer/exp-small \
|
||||
--lang-dir data/lang_char \
|
||||
--context-size 1 \
|
||||
--decoding-method $m \
|
||||
--num-encoder-layers 2,2,2,2,2,2 \
|
||||
--feedforward-dim 512,768,768,768,768,768 \
|
||||
--encoder-dim 192,256,256,256,256,256 \
|
||||
--encoder-unmasked-dim 192,192,192,192,192,192
|
||||
done
|
||||
```
|
||||
|
||||
Pretrained models, training logs, decoding logs, tensorboard and decoding results
|
||||
are available at
|
||||
<https://huggingface.co/zrjin/icefall-asr-aishell-zipformer-small-2023-10-24/>
|
||||
|
||||
##### large-scaled model, number of model parameters: 157285130, i.e., 157.29 M
|
||||
|
||||
| | test | dev | comment |
|
||||
|------------------------|------|------|-----------------------------------------|
|
||||
| greedy search | 4.49 | 4.22 | --epoch 56 --avg 23 |
|
||||
| modified beam search | 4.28 | 4.03 | --epoch 56 --avg 23 |
|
||||
| fast beam search | 4.44 | 4.18 | --epoch 56 --avg 23 |
|
||||
|
||||
Command for training is:
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES="0,1"
|
||||
|
||||
./zipformer/train.py \
|
||||
--world-size 2 \
|
||||
--num-epochs 60 \
|
||||
--use-fp16 1 \
|
||||
--context-size 1 \
|
||||
--exp-dir ./zipformer/exp-large \
|
||||
--enable-musan 0 \
|
||||
--lr-batches 7500 \
|
||||
--lr-epochs 18 \
|
||||
--spec-aug-time-warp-factor 20 \
|
||||
--num-encoder-layers 2,2,4,5,4,2 \
|
||||
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||
--encoder-dim 192,256,512,768,512,256 \
|
||||
--encoder-unmasked-dim 192,192,256,320,256,192 \
|
||||
--max-duration 800
|
||||
```
|
||||
|
||||
Command for decoding is:
|
||||
```bash
|
||||
for m in greedy_search modified_beam_search fast_beam_search ; do
|
||||
./zipformer/decode.py \
|
||||
--epoch 56 \
|
||||
--avg 23 \
|
||||
--exp-dir ./zipformer/exp-large \
|
||||
--lang-dir data/lang_char \
|
||||
--context-size 1 \
|
||||
--decoding-method $m \
|
||||
--num-encoder-layers 2,2,4,5,4,2 \
|
||||
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||
--encoder-dim 192,256,512,768,512,256 \
|
||||
--encoder-unmasked-dim 192,192,256,320,256,192
|
||||
done
|
||||
```
|
||||
|
||||
Pretrained models, training logs, decoding logs, tensorboard and decoding results
|
||||
are available at
|
||||
<https://huggingface.co/zrjin/icefall-asr-aishell-zipformer-large-2023-10-24/>
|
||||
|
||||
#### Pruned transducer stateless 7 streaming
|
||||
[./pruned_transducer_stateless7_streaming](./pruned_transducer_stateless7_streaming)
|
||||
|
@ -8,6 +8,7 @@ set -eou pipefail
|
||||
nj=15
|
||||
stage=-1
|
||||
stop_stage=11
|
||||
perturb_speed=true
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
@ -114,7 +115,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "Stage 3: Compute fbank for aishell"
|
||||
if [ ! -f data/fbank/.aishell.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_aishell.py --perturb-speed True
|
||||
./local/compute_fbank_aishell.py --perturb-speed ${perturb_speed}
|
||||
touch data/fbank/.aishell.done
|
||||
fi
|
||||
fi
|
||||
|
0
egs/aishell/ASR/zipformer/__init__.py
Normal file
0
egs/aishell/ASR/zipformer/__init__.py
Normal file
1
egs/aishell/ASR/zipformer/asr_datamodule.py
Symbolic link
1
egs/aishell/ASR/zipformer/asr_datamodule.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/asr_datamodule.py
|
1
egs/aishell/ASR/zipformer/beam_search.py
Symbolic link
1
egs/aishell/ASR/zipformer/beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/beam_search.py
|
814
egs/aishell/ASR/zipformer/decode.py
Executable file
814
egs/aishell/ASR/zipformer/decode.py
Executable file
@ -0,0 +1,814 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao
|
||||
# Mingshuang Luo)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./zipformer/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) modified beam search
|
||||
./zipformer/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) fast beam search (trivial_graph)
|
||||
./zipformer/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
|
||||
(4) fast beam search (LG)
|
||||
./zipformer/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_LG \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
|
||||
(5) fast beam search (nbest oracle WER)
|
||||
./zipformer/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--lang-dir data/lang_char \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_oracle \
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64 \
|
||||
--num-paths 200 \
|
||||
--nbest-scale 0.5
|
||||
"""
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import AishellAsrDataModule
|
||||
from beam_search import (
|
||||
beam_search,
|
||||
fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_LG,
|
||||
fast_beam_search_nbest_oracle,
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
)
|
||||
from lhotse.cut import Cut
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall.char_graph_compiler import CharCtcTrainingGraphCompiler
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
make_pad_mask,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=30,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=Path,
|
||||
default="data/lang_char",
|
||||
help="The lang dir containing word table and LG graph",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Possible values are:
|
||||
- greedy_search
|
||||
- modified_beam_search
|
||||
- fast_beam_search
|
||||
- fast_beam_search_LG
|
||||
- fast_beam_search_nbest_oracle
|
||||
If you use fast_beam_search_LG, you have to specify
|
||||
`--lang-dir`, which should contain `LG.pt`.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam-size",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An integer indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is beam_search or
|
||||
modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=20.0,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search,
|
||||
fast_beam_search, fast_beam_search_LG,
|
||||
and fast_beam_search_nbest_oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ngram-lm-scale",
|
||||
type=float,
|
||||
default=0.01,
|
||||
help="""
|
||||
Used only when --decoding_method is fast_beam_search_LG.
|
||||
It specifies the scale for n-gram LM scores.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ilme-scale",
|
||||
type=float,
|
||||
default=0.2,
|
||||
help="""
|
||||
Used only when --decoding_method is fast_beam_search_LG.
|
||||
It specifies the scale for the internal language model estimation.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=8,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search, fast_beam_search_LG,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=64,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search, fast_beam_search, fast_beam_search_LG,
|
||||
and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
default=1,
|
||||
help="""Maximum number of symbols per frame.
|
||||
Used only when --decoding_method is greedy_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=200,
|
||||
help="""Number of paths for nbest decoding.
|
||||
Used only when the decoding method is fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nbest-scale",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="""Scale applied to lattice scores when computing nbest paths.
|
||||
Used only when the decoding method is and fast_beam_search_nbest_oracle""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--blank-penalty",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="""
|
||||
The penalty applied on blank symbol during decoding.
|
||||
Note: It is a positive value that would be applied to logits like
|
||||
this `logits[:, 0] -= blank_penalty` (suppose logits.shape is
|
||||
[batch_size, vocab] and blank id is 0).
|
||||
""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
lexicon: Lexicon,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
batch: dict,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
|
||||
- key: It indicates the setting used for decoding. For example,
|
||||
if greedy_search is used, it would be "greedy_search"
|
||||
If beam search with a beam size of 7 is used, it would be
|
||||
"beam_7"
|
||||
- value: It contains the decoding result. `len(value)` equals to
|
||||
batch size. `value[i]` is the decoding result for the i-th
|
||||
utterance in the given batch.
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
|
||||
feature = feature.to(device)
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(device)
|
||||
|
||||
if params.causal:
|
||||
# this seems to cause insertions at the end of the utterance if used with zipformer.
|
||||
pad_len = 30
|
||||
feature_lens += pad_len
|
||||
feature = torch.nn.functional.pad(
|
||||
feature,
|
||||
pad=(0, 0, 0, pad_len),
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
x, x_lens = model.encoder_embed(feature, feature_lens)
|
||||
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
|
||||
encoder_out, encoder_out_lens = model.encoder(x, x_lens, src_key_padding_mask)
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
hyps = []
|
||||
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
elif params.decoding_method == "fast_beam_search_LG":
|
||||
hyp_tokens = fast_beam_search_one_best(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
blank_penalty=params.blank_penalty,
|
||||
ilme_scale=params.ilme_scale,
|
||||
)
|
||||
for hyp in hyp_tokens:
|
||||
sentence = "".join([lexicon.word_table[i] for i in hyp])
|
||||
hyps.append(list(sentence))
|
||||
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||
model=model,
|
||||
decoding_graph=decoding_graph,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam,
|
||||
max_contexts=params.max_contexts,
|
||||
max_states=params.max_states,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=graph_compiler.texts_to_ids(supervisions["text"]),
|
||||
nbest_scale=params.nbest_scale,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||
hyp_tokens = greedy_search_batch(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
hyp_tokens = modified_beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
blank_penalty=params.blank_penalty,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for i in range(encoder_out.size(0)):
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i + 1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
max_sym_per_frame=params.max_sym_per_frame,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
elif params.decoding_method == "beam_search":
|
||||
hyp = beam_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out_i,
|
||||
beam=params.beam_size,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported decoding method: {params.decoding_method}"
|
||||
)
|
||||
hyps.append([lexicon.token_table[idx] for idx in hyp])
|
||||
|
||||
key = f"blank_penalty_{params.blank_penalty}"
|
||||
if params.decoding_method == "greedy_search":
|
||||
return {"greedy_search_" + key: hyps}
|
||||
elif "fast_beam_search" in params.decoding_method:
|
||||
key += f"_beam_{params.beam}_"
|
||||
key += f"max_contexts_{params.max_contexts}_"
|
||||
key += f"max_states_{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
key += f"_num_paths_{params.num_paths}_"
|
||||
key += f"nbest_scale_{params.nbest_scale}"
|
||||
if "LG" in params.decoding_method:
|
||||
key += f"_ilme_scale_{params.ilme_scale}"
|
||||
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||
|
||||
return {key: hyps}
|
||||
else:
|
||||
return {f"beam_size_{params.beam_size}_" + key: hyps}
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
lexicon: Lexicon,
|
||||
graph_compiler: CharCtcTrainingGraphCompiler,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
log_interval = 50
|
||||
else:
|
||||
log_interval = 20
|
||||
|
||||
results = defaultdict(list)
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
texts = [list("".join(text.split())) for text in texts]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
model=model,
|
||||
lexicon=lexicon,
|
||||
graph_compiler=graph_compiler,
|
||||
decoding_graph=decoding_graph,
|
||||
batch=batch,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
this_batch.append((cut_id, ref_text, hyp_words))
|
||||
|
||||
results[name].extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
return results
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AishellAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
assert params.decoding_method in (
|
||||
"greedy_search",
|
||||
"beam_search",
|
||||
"modified_beam_search",
|
||||
"fast_beam_search",
|
||||
"fast_beam_search_LG",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if params.causal:
|
||||
assert (
|
||||
"," not in params.chunk_size
|
||||
), "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
params.suffix += f"-chunk-{params.chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
if "nbest" in params.decoding_method:
|
||||
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||
params.suffix += f"-num-paths-{params.num_paths}"
|
||||
if "LG" in params.decoding_method:
|
||||
params.suffix += f"_ilme_scale_{params.ilme_scale}"
|
||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||
elif "beam_search" in params.decoding_method:
|
||||
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||
else:
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
params.suffix += f"-blank-penalty-{params.blank_penalty}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
params.blank_id = lexicon.token_table["<blk>"]
|
||||
params.vocab_size = max(lexicon.tokens) + 1
|
||||
|
||||
graph_compiler = CharCtcTrainingGraphCompiler(
|
||||
lexicon=lexicon,
|
||||
device=device,
|
||||
)
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if i >= 1:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if "LG" in params.decoding_method:
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
lg_filename = params.lang_dir / "LG.pt"
|
||||
logging.info(f"Loading {lg_filename}")
|
||||
decoding_graph = k2.Fsa.from_dict(
|
||||
torch.load(lg_filename, map_location=device)
|
||||
)
|
||||
decoding_graph.scores *= params.ngram_lm_scale
|
||||
else:
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
else:
|
||||
decoding_graph = None
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
aishell = AishellAsrDataModule(args)
|
||||
|
||||
def remove_short_utt(c: Cut):
|
||||
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||
if T <= 0:
|
||||
logging.warning(
|
||||
f"Exclude cut with ID {c.id} from decoding, num_frames : {c.num_frames}."
|
||||
)
|
||||
return T > 0
|
||||
|
||||
dev_cuts = aishell.valid_cuts()
|
||||
dev_cuts = dev_cuts.filter(remove_short_utt)
|
||||
dev_dl = aishell.valid_dataloaders(dev_cuts)
|
||||
|
||||
test_cuts = aishell.test_cuts()
|
||||
test_cuts = test_cuts.filter(remove_short_utt)
|
||||
test_dl = aishell.test_dataloaders(test_cuts)
|
||||
|
||||
test_sets = ["dev", "test"]
|
||||
test_dls = [dev_dl, test_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dls):
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
model=model,
|
||||
lexicon=lexicon,
|
||||
graph_compiler=graph_compiler,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/aishell/ASR/zipformer/decode_stream.py
Symbolic link
1
egs/aishell/ASR/zipformer/decode_stream.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/decode_stream.py
|
1
egs/aishell/ASR/zipformer/decoder.py
Symbolic link
1
egs/aishell/ASR/zipformer/decoder.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/decoder.py
|
1
egs/aishell/ASR/zipformer/encoder_interface.py
Symbolic link
1
egs/aishell/ASR/zipformer/encoder_interface.py
Symbolic link
@ -0,0 +1 @@
|
||||
../pruned_transducer_stateless2/encoder_interface.py
|
1
egs/aishell/ASR/zipformer/export-onnx-streaming.py
Symbolic link
1
egs/aishell/ASR/zipformer/export-onnx-streaming.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export-onnx-streaming.py
|
1
egs/aishell/ASR/zipformer/export-onnx.py
Symbolic link
1
egs/aishell/ASR/zipformer/export-onnx.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export-onnx.py
|
1
egs/aishell/ASR/zipformer/export.py
Symbolic link
1
egs/aishell/ASR/zipformer/export.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/export.py
|
1
egs/aishell/ASR/zipformer/jit_pretrained.py
Symbolic link
1
egs/aishell/ASR/zipformer/jit_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/jit_pretrained.py
|
1
egs/aishell/ASR/zipformer/jit_pretrained_streaming.py
Symbolic link
1
egs/aishell/ASR/zipformer/jit_pretrained_streaming.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/jit_pretrained_streaming.py
|
1
egs/aishell/ASR/zipformer/joiner.py
Symbolic link
1
egs/aishell/ASR/zipformer/joiner.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/joiner.py
|
1
egs/aishell/ASR/zipformer/model.py
Symbolic link
1
egs/aishell/ASR/zipformer/model.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/model.py
|
1
egs/aishell/ASR/zipformer/onnx_check.py
Symbolic link
1
egs/aishell/ASR/zipformer/onnx_check.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_check.py
|
286
egs/aishell/ASR/zipformer/onnx_decode.py
Executable file
286
egs/aishell/ASR/zipformer/onnx_decode.py
Executable file
@ -0,0 +1,286 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
|
||||
# Zengwei Yao,
|
||||
# Xiaoyu Yang,
|
||||
# Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This script loads ONNX exported models and uses them to decode the test sets.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple
|
||||
|
||||
import k2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from asr_datamodule import AishellAsrDataModule
|
||||
from lhotse.cut import Cut
|
||||
from onnx_pretrained import OnnxModel, greedy_search
|
||||
|
||||
from icefall.utils import setup_logger, store_transcripts, write_error_stats
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--encoder-model-filename",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the encoder onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoder-model-filename",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the decoder onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--joiner-model-filename",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the joiner onnx model. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless7/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
default="data/lang_char/tokens.txt",
|
||||
help="Path to the tokens.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="Valid values are greedy_search and modified_beam_search",
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def decode_one_batch(
|
||||
model: OnnxModel, token_table: k2.SymbolTable, batch: dict
|
||||
) -> List[List[str]]:
|
||||
"""Decode one batch and return the result.
|
||||
Currently it only greedy_search is supported.
|
||||
|
||||
Args:
|
||||
model:
|
||||
The neural model.
|
||||
token_table:
|
||||
Mapping ids to tokens.
|
||||
batch:
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
|
||||
Returns:
|
||||
Return the decoded results for each utterance.
|
||||
"""
|
||||
feature = batch["inputs"]
|
||||
assert feature.ndim == 3
|
||||
# at entry, feature is (N, T, C)
|
||||
|
||||
supervisions = batch["supervisions"]
|
||||
feature_lens = supervisions["num_frames"].to(dtype=torch.int64)
|
||||
|
||||
encoder_out, encoder_out_lens = model.run_encoder(x=feature, x_lens=feature_lens)
|
||||
|
||||
hyps = greedy_search(
|
||||
model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens
|
||||
)
|
||||
|
||||
hyps = [[token_table[h] for h in hyp] for hyp in hyps]
|
||||
return hyps
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
dl: torch.utils.data.DataLoader,
|
||||
model: nn.Module,
|
||||
token_table: k2.SymbolTable,
|
||||
) -> Tuple[List[Tuple[str, List[str], List[str]]], float]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
dl:
|
||||
PyTorch's dataloader containing the dataset to decode.
|
||||
model:
|
||||
The neural model.
|
||||
token_table:
|
||||
Mapping ids to tokens.
|
||||
|
||||
Returns:
|
||||
- A list of tuples. Each tuple contains three elements:
|
||||
- cut_id,
|
||||
- reference transcript,
|
||||
- predicted result.
|
||||
- The total duration (in seconds) of the dataset.
|
||||
"""
|
||||
num_cuts = 0
|
||||
|
||||
try:
|
||||
num_batches = len(dl)
|
||||
except TypeError:
|
||||
num_batches = "?"
|
||||
|
||||
log_interval = 10
|
||||
total_duration = 0
|
||||
|
||||
results = []
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
total_duration += sum([cut.duration for cut in batch["supervisions"]["cut"]])
|
||||
|
||||
hyps = decode_one_batch(model=model, token_table=token_table, batch=batch)
|
||||
|
||||
this_batch = []
|
||||
assert len(hyps) == len(texts)
|
||||
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
|
||||
ref_words = list(ref_text)
|
||||
this_batch.append((cut_id, ref_words, hyp_words))
|
||||
|
||||
results.extend(this_batch)
|
||||
|
||||
num_cuts += len(texts)
|
||||
|
||||
if batch_idx % log_interval == 0:
|
||||
batch_str = f"{batch_idx}/{num_batches}"
|
||||
|
||||
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||
|
||||
return results, total_duration
|
||||
|
||||
|
||||
def save_results(
|
||||
res_dir: Path,
|
||||
test_set_name: str,
|
||||
results: List[Tuple[str, List[str], List[str]]],
|
||||
):
|
||||
recog_path = res_dir / f"recogs-{test_set_name}.txt"
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = res_dir / f"errs-{test_set_name}.txt"
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(f, f"{test_set_name}", results, enable_log=True)
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
errs_info = res_dir / f"wer-summary-{test_set_name}.txt"
|
||||
with open(errs_info, "w") as f:
|
||||
print("WER", file=f)
|
||||
print(wer, file=f)
|
||||
|
||||
s = "\nFor {}, WER is {}:\n".format(test_set_name, wer)
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AishellAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
assert (
|
||||
args.decoding_method == "greedy_search"
|
||||
), "Only supports greedy_search currently."
|
||||
res_dir = Path(args.exp_dir) / f"onnx-{args.decoding_method}"
|
||||
|
||||
setup_logger(f"{res_dir}/log-decode")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
token_table = k2.SymbolTable.from_file(args.tokens)
|
||||
assert token_table[0] == "<blk>"
|
||||
|
||||
logging.info(vars(args))
|
||||
|
||||
logging.info("About to create model")
|
||||
model = OnnxModel(
|
||||
encoder_model_filename=args.encoder_model_filename,
|
||||
decoder_model_filename=args.decoder_model_filename,
|
||||
joiner_model_filename=args.joiner_model_filename,
|
||||
)
|
||||
|
||||
# we need cut ids to display recognition results.
|
||||
args.return_cuts = True
|
||||
|
||||
aishell = AishellAsrDataModule(args)
|
||||
|
||||
def remove_short_utt(c: Cut):
|
||||
T = ((c.num_frames - 7) // 2 + 1) // 2
|
||||
if T <= 0:
|
||||
logging.warning(
|
||||
f"Exclude cut with ID {c.id} from decoding, num_frames : {c.num_frames}."
|
||||
)
|
||||
return T > 0
|
||||
|
||||
dev_cuts = aishell.valid_cuts()
|
||||
dev_cuts = dev_cuts.filter(remove_short_utt)
|
||||
dev_dl = aishell.valid_dataloaders(dev_cuts)
|
||||
|
||||
test_cuts = aishell.test_net_cuts()
|
||||
test_cuts = test_cuts.filter(remove_short_utt)
|
||||
test_dl = aishell.test_dataloaders(test_cuts)
|
||||
|
||||
test_sets = ["dev", "test"]
|
||||
test_dl = [dev_dl, test_dl]
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
start_time = time.time()
|
||||
results, total_duration = decode_dataset(
|
||||
dl=test_dl, model=model, token_table=token_table
|
||||
)
|
||||
end_time = time.time()
|
||||
elapsed_seconds = end_time - start_time
|
||||
rtf = elapsed_seconds / total_duration
|
||||
|
||||
logging.info(f"Elapsed time: {elapsed_seconds:.3f} s")
|
||||
logging.info(f"Wave duration: {total_duration:.3f} s")
|
||||
logging.info(
|
||||
f"Real time factor (RTF): {elapsed_seconds:.3f}/{total_duration:.3f} = {rtf:.3f}"
|
||||
)
|
||||
|
||||
save_results(res_dir=res_dir, test_set_name=test_set, results=results)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/aishell/ASR/zipformer/onnx_pretrained-streaming.py
Symbolic link
1
egs/aishell/ASR/zipformer/onnx_pretrained-streaming.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_pretrained-streaming.py
|
1
egs/aishell/ASR/zipformer/onnx_pretrained.py
Symbolic link
1
egs/aishell/ASR/zipformer/onnx_pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/onnx_pretrained.py
|
1
egs/aishell/ASR/zipformer/optim.py
Symbolic link
1
egs/aishell/ASR/zipformer/optim.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/optim.py
|
1
egs/aishell/ASR/zipformer/pretrained.py
Symbolic link
1
egs/aishell/ASR/zipformer/pretrained.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/pretrained.py
|
1
egs/aishell/ASR/zipformer/scaling.py
Symbolic link
1
egs/aishell/ASR/zipformer/scaling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling.py
|
1
egs/aishell/ASR/zipformer/scaling_converter.py
Symbolic link
1
egs/aishell/ASR/zipformer/scaling_converter.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/scaling_converter.py
|
1
egs/aishell/ASR/zipformer/streaming_beam_search.py
Symbolic link
1
egs/aishell/ASR/zipformer/streaming_beam_search.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/streaming_beam_search.py
|
880
egs/aishell/ASR/zipformer/streaming_decode.py
Executable file
880
egs/aishell/ASR/zipformer/streaming_decode.py
Executable file
@ -0,0 +1,880 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022-2023 Xiaomi Corporation (Authors: Wei Kang,
|
||||
# Fangjun Kuang,
|
||||
# Zengwei Yao)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Usage:
|
||||
./zipformer/streaming_decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--causal 1 \
|
||||
--chunk-size 16 \
|
||||
--left-context-frames 256 \
|
||||
--exp-dir ./zipformer/exp \
|
||||
--decoding-method greedy_search \
|
||||
--num-decode-streams 2000
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import k2
|
||||
import numpy as np
|
||||
import torch
|
||||
from asr_datamodule import AishellAsrDataModule
|
||||
from decode_stream import DecodeStream
|
||||
from kaldifeat import Fbank, FbankOptions
|
||||
from lhotse import CutSet
|
||||
from streaming_beam_search import (
|
||||
fast_beam_search_one_best,
|
||||
greedy_search,
|
||||
modified_beam_search,
|
||||
)
|
||||
from torch import Tensor, nn
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from train import add_model_arguments, get_model, get_params
|
||||
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
find_checkpoints,
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
make_pad_mask,
|
||||
setup_logger,
|
||||
store_transcripts,
|
||||
str2bool,
|
||||
write_error_stats,
|
||||
)
|
||||
|
||||
LOG_EPS = math.log(1e-10)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=28,
|
||||
help="""It specifies the checkpoint to use for decoding.
|
||||
Note: Epoch counts from 1.
|
||||
You can specify --avg to use more checkpoints for model averaging.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--iter",
|
||||
type=int,
|
||||
default=0,
|
||||
help="""If positive, --epoch is ignored and it
|
||||
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||
You can specify --avg to use more checkpoints for model averaging.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=15,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch' and '--iter'",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--use-averaged-model",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to load averaged model. Currently it only supports "
|
||||
"using --epoch. If True, it would decode with the averaged model "
|
||||
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||
"Actually only the models with epoch number of `epoch-avg` and "
|
||||
"`epoch` are loaded for averaging. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="zipformer/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="data/lang_char",
|
||||
help="Path to the lang dir(containing lexicon, tokens, etc.)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="""Supported decoding methods are:
|
||||
greedy_search
|
||||
modified_beam_search
|
||||
fast_beam_search
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num_active_paths",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""An interger indicating how many candidates we will keep for each
|
||||
frame. Used only when --decoding-method is modified_beam_search.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--beam",
|
||||
type=float,
|
||||
default=4,
|
||||
help="""A floating point value to calculate the cutoff score during beam
|
||||
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||
`beam` in Kaldi.
|
||||
Used only when --decoding-method is fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
default=4,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-states",
|
||||
type=int,
|
||||
default=32,
|
||||
help="""Used only when --decoding-method is
|
||||
fast_beam_search""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context-size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--blank-penalty",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="""
|
||||
The penalty applied on blank symbol during decoding.
|
||||
Note: It is a positive value that would be applied to logits like
|
||||
this `logits[:, 0] -= blank_penalty` (suppose logits.shape is
|
||||
[batch_size, vocab] and blank id is 0).
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-decode-streams",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The number of streams that can be decoded parallel.",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def get_init_states(
|
||||
model: nn.Module,
|
||||
batch_size: int = 1,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> List[torch.Tensor]:
|
||||
"""
|
||||
Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6]
|
||||
is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2).
|
||||
states[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
"""
|
||||
states = model.encoder.get_init_states(batch_size, device)
|
||||
|
||||
embed_states = model.encoder_embed.get_init_states(batch_size, device)
|
||||
states.append(embed_states)
|
||||
|
||||
processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device)
|
||||
states.append(processed_lens)
|
||||
|
||||
return states
|
||||
|
||||
|
||||
def stack_states(state_list: List[List[torch.Tensor]]) -> List[torch.Tensor]:
|
||||
"""Stack list of zipformer states that correspond to separate utterances
|
||||
into a single emformer state, so that it can be used as an input for
|
||||
zipformer when those utterances are formed into a batch.
|
||||
|
||||
Args:
|
||||
state_list:
|
||||
Each element in state_list corresponding to the internal state
|
||||
of the zipformer model for a single utterance. For element-n,
|
||||
state_list[n] is a list of cached tensors of all encoder layers. For layer-i,
|
||||
state_list[n][i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1,
|
||||
cached_val2, cached_conv1, cached_conv2).
|
||||
state_list[n][-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
state_list[n][-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`unstack_states`.
|
||||
"""
|
||||
batch_size = len(state_list)
|
||||
assert (len(state_list[0]) - 2) % 6 == 0, len(state_list[0])
|
||||
tot_num_layers = (len(state_list[0]) - 2) // 6
|
||||
|
||||
batch_states = []
|
||||
for layer in range(tot_num_layers):
|
||||
layer_offset = layer * 6
|
||||
# cached_key: (left_context_len, batch_size, key_dim)
|
||||
cached_key = torch.cat(
|
||||
[state_list[i][layer_offset] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||
cached_nonlin_attn = torch.cat(
|
||||
[state_list[i][layer_offset + 1] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||
cached_val1 = torch.cat(
|
||||
[state_list[i][layer_offset + 2] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||
cached_val2 = torch.cat(
|
||||
[state_list[i][layer_offset + 3] for i in range(batch_size)], dim=1
|
||||
)
|
||||
# cached_conv1: (#batch, channels, left_pad)
|
||||
cached_conv1 = torch.cat(
|
||||
[state_list[i][layer_offset + 4] for i in range(batch_size)], dim=0
|
||||
)
|
||||
# cached_conv2: (#batch, channels, left_pad)
|
||||
cached_conv2 = torch.cat(
|
||||
[state_list[i][layer_offset + 5] for i in range(batch_size)], dim=0
|
||||
)
|
||||
batch_states += [
|
||||
cached_key,
|
||||
cached_nonlin_attn,
|
||||
cached_val1,
|
||||
cached_val2,
|
||||
cached_conv1,
|
||||
cached_conv2,
|
||||
]
|
||||
|
||||
cached_embed_left_pad = torch.cat(
|
||||
[state_list[i][-2] for i in range(batch_size)], dim=0
|
||||
)
|
||||
batch_states.append(cached_embed_left_pad)
|
||||
|
||||
processed_lens = torch.cat([state_list[i][-1] for i in range(batch_size)], dim=0)
|
||||
batch_states.append(processed_lens)
|
||||
|
||||
return batch_states
|
||||
|
||||
|
||||
def unstack_states(batch_states: List[Tensor]) -> List[List[Tensor]]:
|
||||
"""Unstack the zipformer state corresponding to a batch of utterances
|
||||
into a list of states, where the i-th entry is the state from the i-th
|
||||
utterance in the batch.
|
||||
|
||||
Note:
|
||||
It is the inverse of :func:`stack_states`.
|
||||
|
||||
Args:
|
||||
batch_states: A list of cached tensors of all encoder layers. For layer-i,
|
||||
states[i*6:(i+1)*6] is (cached_key, cached_nonlin_attn, cached_val1, cached_val2,
|
||||
cached_conv1, cached_conv2).
|
||||
state_list[-2] is the cached left padding for ConvNeXt module,
|
||||
of shape (batch_size, num_channels, left_pad, num_freqs)
|
||||
states[-1] is processed_lens of shape (batch,), which records the number
|
||||
of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch.
|
||||
|
||||
Returns:
|
||||
state_list: A list of list. Each element in state_list corresponding to the internal state
|
||||
of the zipformer model for a single utterance.
|
||||
"""
|
||||
assert (len(batch_states) - 2) % 6 == 0, len(batch_states)
|
||||
tot_num_layers = (len(batch_states) - 2) // 6
|
||||
|
||||
processed_lens = batch_states[-1]
|
||||
batch_size = processed_lens.shape[0]
|
||||
|
||||
state_list = [[] for _ in range(batch_size)]
|
||||
|
||||
for layer in range(tot_num_layers):
|
||||
layer_offset = layer * 6
|
||||
# cached_key: (left_context_len, batch_size, key_dim)
|
||||
cached_key_list = batch_states[layer_offset].chunk(chunks=batch_size, dim=1)
|
||||
# cached_nonlin_attn: (num_heads, batch_size, left_context_len, head_dim)
|
||||
cached_nonlin_attn_list = batch_states[layer_offset + 1].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_val1: (left_context_len, batch_size, value_dim)
|
||||
cached_val1_list = batch_states[layer_offset + 2].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_val2: (left_context_len, batch_size, value_dim)
|
||||
cached_val2_list = batch_states[layer_offset + 3].chunk(
|
||||
chunks=batch_size, dim=1
|
||||
)
|
||||
# cached_conv1: (#batch, channels, left_pad)
|
||||
cached_conv1_list = batch_states[layer_offset + 4].chunk(
|
||||
chunks=batch_size, dim=0
|
||||
)
|
||||
# cached_conv2: (#batch, channels, left_pad)
|
||||
cached_conv2_list = batch_states[layer_offset + 5].chunk(
|
||||
chunks=batch_size, dim=0
|
||||
)
|
||||
for i in range(batch_size):
|
||||
state_list[i] += [
|
||||
cached_key_list[i],
|
||||
cached_nonlin_attn_list[i],
|
||||
cached_val1_list[i],
|
||||
cached_val2_list[i],
|
||||
cached_conv1_list[i],
|
||||
cached_conv2_list[i],
|
||||
]
|
||||
|
||||
cached_embed_left_pad_list = batch_states[-2].chunk(chunks=batch_size, dim=0)
|
||||
for i in range(batch_size):
|
||||
state_list[i].append(cached_embed_left_pad_list[i])
|
||||
|
||||
processed_lens_list = batch_states[-1].chunk(chunks=batch_size, dim=0)
|
||||
for i in range(batch_size):
|
||||
state_list[i].append(processed_lens_list[i])
|
||||
|
||||
return state_list
|
||||
|
||||
|
||||
def streaming_forward(
|
||||
features: Tensor,
|
||||
feature_lens: Tensor,
|
||||
model: nn.Module,
|
||||
states: List[Tensor],
|
||||
chunk_size: int,
|
||||
left_context_len: int,
|
||||
) -> Tuple[Tensor, Tensor, List[Tensor]]:
|
||||
"""
|
||||
Returns encoder outputs, output lengths, and updated states.
|
||||
"""
|
||||
cached_embed_left_pad = states[-2]
|
||||
(x, x_lens, new_cached_embed_left_pad,) = model.encoder_embed.streaming_forward(
|
||||
x=features,
|
||||
x_lens=feature_lens,
|
||||
cached_left_pad=cached_embed_left_pad,
|
||||
)
|
||||
assert x.size(1) == chunk_size, (x.size(1), chunk_size)
|
||||
|
||||
src_key_padding_mask = make_pad_mask(x_lens)
|
||||
|
||||
# processed_mask is used to mask out initial states
|
||||
processed_mask = torch.arange(left_context_len, device=x.device).expand(
|
||||
x.size(0), left_context_len
|
||||
)
|
||||
processed_lens = states[-1] # (batch,)
|
||||
# (batch, left_context_size)
|
||||
processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1)
|
||||
# Update processed lengths
|
||||
new_processed_lens = processed_lens + x_lens
|
||||
|
||||
# (batch, left_context_size + chunk_size)
|
||||
src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1)
|
||||
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
encoder_states = states[:-2]
|
||||
(
|
||||
encoder_out,
|
||||
encoder_out_lens,
|
||||
new_encoder_states,
|
||||
) = model.encoder.streaming_forward(
|
||||
x=x,
|
||||
x_lens=x_lens,
|
||||
states=encoder_states,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
)
|
||||
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
new_states = new_encoder_states + [
|
||||
new_cached_embed_left_pad,
|
||||
new_processed_lens,
|
||||
]
|
||||
return encoder_out, encoder_out_lens, new_states
|
||||
|
||||
|
||||
def decode_one_chunk(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
decode_streams: List[DecodeStream],
|
||||
) -> List[int]:
|
||||
"""Decode one chunk frames of features for each decode_streams and
|
||||
return the indexes of finished streams in a List.
|
||||
|
||||
Args:
|
||||
params:
|
||||
It's the return value of :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
decode_streams:
|
||||
A List of DecodeStream, each belonging to a utterance.
|
||||
Returns:
|
||||
Return a List containing which DecodeStreams are finished.
|
||||
"""
|
||||
device = model.device
|
||||
chunk_size = int(params.chunk_size)
|
||||
left_context_len = int(params.left_context_frames)
|
||||
|
||||
features = []
|
||||
feature_lens = []
|
||||
states = []
|
||||
processed_lens = [] # Used in fast-beam-search
|
||||
|
||||
for stream in decode_streams:
|
||||
feat, feat_len = stream.get_feature_frames(chunk_size * 2)
|
||||
features.append(feat)
|
||||
feature_lens.append(feat_len)
|
||||
states.append(stream.states)
|
||||
processed_lens.append(stream.done_frames)
|
||||
|
||||
feature_lens = torch.tensor(feature_lens, device=device)
|
||||
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||
|
||||
# Make sure the length after encoder_embed is at least 1.
|
||||
# The encoder_embed subsample features (T - 7) // 2
|
||||
# The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling
|
||||
tail_length = chunk_size * 2 + 7 + 2 * 3
|
||||
if features.size(1) < tail_length:
|
||||
pad_length = tail_length - features.size(1)
|
||||
feature_lens += pad_length
|
||||
features = torch.nn.functional.pad(
|
||||
features,
|
||||
(0, 0, 0, pad_length),
|
||||
mode="constant",
|
||||
value=LOG_EPS,
|
||||
)
|
||||
|
||||
states = stack_states(states)
|
||||
|
||||
encoder_out, encoder_out_lens, new_states = streaming_forward(
|
||||
features=features,
|
||||
feature_lens=feature_lens,
|
||||
model=model,
|
||||
states=states,
|
||||
chunk_size=chunk_size,
|
||||
left_context_len=left_context_len,
|
||||
)
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
|
||||
if params.decoding_method == "greedy_search":
|
||||
greedy_search(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
streams=decode_streams,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
processed_lens = torch.tensor(processed_lens, device=device)
|
||||
processed_lens = processed_lens + encoder_out_lens
|
||||
fast_beam_search_one_best(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
processed_lens=processed_lens,
|
||||
streams=decode_streams,
|
||||
beam=params.beam,
|
||||
max_states=params.max_states,
|
||||
max_contexts=params.max_contexts,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
modified_beam_search(
|
||||
model=model,
|
||||
streams=decode_streams,
|
||||
encoder_out=encoder_out,
|
||||
num_active_paths=params.num_active_paths,
|
||||
blank_penalty=params.blank_penalty,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
|
||||
states = unstack_states(new_states)
|
||||
|
||||
finished_streams = []
|
||||
for i in range(len(decode_streams)):
|
||||
decode_streams[i].states = states[i]
|
||||
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||
if decode_streams[i].done:
|
||||
finished_streams.append(i)
|
||||
|
||||
return finished_streams
|
||||
|
||||
|
||||
def decode_dataset(
|
||||
cuts: CutSet,
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
lexicon: Lexicon,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
cuts:
|
||||
Lhotse Cutset containing the dataset to decode.
|
||||
params:
|
||||
It is returned by :func:`get_params`.
|
||||
model:
|
||||
The neural model.
|
||||
lexicon:
|
||||
The Lexicon.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
Its value is a list of tuples. Each tuple contains two elements:
|
||||
The first is the reference transcript, and the second is the
|
||||
predicted result.
|
||||
"""
|
||||
device = model.device
|
||||
|
||||
opts = FbankOptions()
|
||||
opts.device = device
|
||||
opts.frame_opts.dither = 0
|
||||
opts.frame_opts.snip_edges = False
|
||||
opts.frame_opts.samp_freq = 16000
|
||||
opts.mel_opts.num_bins = 80
|
||||
|
||||
log_interval = 100
|
||||
|
||||
decode_results = []
|
||||
# Contain decode streams currently running.
|
||||
decode_streams = []
|
||||
for num, cut in enumerate(cuts):
|
||||
# each utterance has a DecodeStream.
|
||||
initial_states = get_init_states(model=model, batch_size=1, device=device)
|
||||
decode_stream = DecodeStream(
|
||||
params=params,
|
||||
cut_id=cut.id,
|
||||
initial_states=initial_states,
|
||||
decoding_graph=decoding_graph,
|
||||
device=device,
|
||||
)
|
||||
|
||||
audio: np.ndarray = cut.load_audio()
|
||||
# audio.shape: (1, num_samples)
|
||||
assert len(audio.shape) == 2
|
||||
assert audio.shape[0] == 1, "Should be single channel"
|
||||
assert audio.dtype == np.float32, audio.dtype
|
||||
|
||||
# The trained model is using normalized samples
|
||||
if audio.max() > 1:
|
||||
logging.warning(
|
||||
f"The audio should be normalized to [-1, 1], audio.max : {audio.max()}."
|
||||
f"Clipping to [-1, 1]."
|
||||
)
|
||||
audio = np.clip(audio, -1, 1)
|
||||
|
||||
samples = torch.from_numpy(audio).squeeze(0)
|
||||
|
||||
fbank = Fbank(opts)
|
||||
feature = fbank(samples.to(device))
|
||||
decode_stream.set_features(feature, tail_pad_len=30)
|
||||
decode_stream.ground_truth = cut.supervisions[0].text
|
||||
|
||||
decode_streams.append(decode_stream)
|
||||
|
||||
while len(decode_streams) >= params.num_decode_streams:
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
list(decode_streams[i].ground_truth.strip()),
|
||||
[
|
||||
lexicon.token_table[idx]
|
||||
for idx in decode_streams[i].decoding_result()
|
||||
],
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
if num % log_interval == 0:
|
||||
logging.info(f"Cuts processed until now is {num}.")
|
||||
|
||||
# decode final chunks of last sequences
|
||||
while len(decode_streams):
|
||||
finished_streams = decode_one_chunk(
|
||||
params=params, model=model, decode_streams=decode_streams
|
||||
)
|
||||
for i in sorted(finished_streams, reverse=True):
|
||||
decode_results.append(
|
||||
(
|
||||
decode_streams[i].id,
|
||||
decode_streams[i].ground_truth.split(),
|
||||
[
|
||||
lexicon.token_table[idx]
|
||||
for idx in decode_streams[i].decoding_result()
|
||||
],
|
||||
)
|
||||
)
|
||||
del decode_streams[i]
|
||||
|
||||
key = f"blank_penalty_{params.blank_penalty}"
|
||||
if params.decoding_method == "greedy_search":
|
||||
key = f"greedy_search_{key}"
|
||||
elif params.decoding_method == "fast_beam_search":
|
||||
key = (
|
||||
f"beam_{params.beam}_"
|
||||
f"max_contexts_{params.max_contexts}_"
|
||||
f"max_states_{params.max_states}_{key}"
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search":
|
||||
key = f"num_active_paths_{params.num_active_paths}_{key}"
|
||||
else:
|
||||
raise ValueError(f"Unsupported decoding method: {params.decoding_method}")
|
||||
return {key: decode_results}
|
||||
|
||||
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
recog_path = (
|
||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=recog_path, texts=results)
|
||||
logging.info(f"The transcripts are stored in {recog_path}")
|
||||
|
||||
# The following prints out WERs, per-word error statistics and aligned
|
||||
# ref/hyp pairs.
|
||||
errs_filename = (
|
||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_filename, "w") as f:
|
||||
wer = write_error_stats(
|
||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||
)
|
||||
test_set_wers[key] = wer
|
||||
|
||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||
|
||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||
errs_info = (
|
||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||
)
|
||||
with open(errs_info, "w") as f:
|
||||
print("settings\tWER", file=f)
|
||||
for key, val in test_set_wers:
|
||||
print("{}\t{}".format(key, val), file=f)
|
||||
|
||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||
note = "\tbest for {}".format(test_set_name)
|
||||
for key, val in test_set_wers:
|
||||
s += "{}\t{}{}\n".format(key, val, note)
|
||||
note = ""
|
||||
logging.info(s)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
parser = get_parser()
|
||||
AishellAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
|
||||
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||
|
||||
if params.iter > 0:
|
||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
assert params.causal, params.causal
|
||||
assert "," not in params.chunk_size, "chunk_size should be one value in decoding."
|
||||
assert (
|
||||
"," not in params.left_context_frames
|
||||
), "left_context_frames should be one value in decoding."
|
||||
params.suffix += f"-chunk-{params.chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
||||
params.suffix += f"-blank-penalty-{params.blank_penalty}"
|
||||
|
||||
# for fast_beam_search
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
params.suffix += f"-max-states-{params.max_states}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
device = torch.device("cpu")
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", 0)
|
||||
|
||||
logging.info(f"Device: {device}")
|
||||
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
params.blank_id = lexicon.token_table["<blk>"]
|
||||
params.vocab_size = max(lexicon.tokens) + 1
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
model = get_model(params)
|
||||
|
||||
if not params.use_averaged_model:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
elif params.avg == 1:
|
||||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||
else:
|
||||
start = params.epoch - params.avg + 1
|
||||
filenames = []
|
||||
for i in range(start, params.epoch + 1):
|
||||
if start >= 0:
|
||||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||
logging.info(f"averaging {filenames}")
|
||||
model.to(device)
|
||||
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||
else:
|
||||
if params.iter > 0:
|
||||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||
: params.avg + 1
|
||||
]
|
||||
if len(filenames) == 0:
|
||||
raise ValueError(
|
||||
f"No checkpoints found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
elif len(filenames) < params.avg + 1:
|
||||
raise ValueError(
|
||||
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||
f" --iter {params.iter}, --avg {params.avg}"
|
||||
)
|
||||
filename_start = filenames[-1]
|
||||
filename_end = filenames[0]
|
||||
logging.info(
|
||||
"Calculating the averaged model over iteration checkpoints"
|
||||
f" from {filename_start} (excluded) to {filename_end}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
else:
|
||||
assert params.avg > 0, params.avg
|
||||
start = params.epoch - params.avg
|
||||
assert start >= 1, start
|
||||
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||
logging.info(
|
||||
f"Calculating the averaged model over epoch range from "
|
||||
f"{start} (excluded) to {params.epoch}"
|
||||
)
|
||||
model.to(device)
|
||||
model.load_state_dict(
|
||||
average_checkpoints_with_averaged_model(
|
||||
filename_start=filename_start,
|
||||
filename_end=filename_end,
|
||||
device=device,
|
||||
)
|
||||
)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
model.device = device
|
||||
|
||||
decoding_graph = None
|
||||
if params.decoding_method == "fast_beam_search":
|
||||
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
aishell = AishellAsrDataModule(args)
|
||||
|
||||
dev_cuts = aishell.valid_cuts()
|
||||
test_cuts = aishell.test_cuts()
|
||||
|
||||
test_sets = ["dev", "test"]
|
||||
test_cuts = [dev_cuts, test_cuts]
|
||||
|
||||
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||
results_dict = decode_dataset(
|
||||
cuts=test_cut,
|
||||
params=params,
|
||||
model=model,
|
||||
lexicon=lexicon,
|
||||
decoding_graph=decoding_graph,
|
||||
)
|
||||
save_results(
|
||||
params=params,
|
||||
test_set_name=test_set,
|
||||
results_dict=results_dict,
|
||||
)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1
egs/aishell/ASR/zipformer/subsampling.py
Symbolic link
1
egs/aishell/ASR/zipformer/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/subsampling.py
|
1350
egs/aishell/ASR/zipformer/train.py
Executable file
1350
egs/aishell/ASR/zipformer/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/aishell/ASR/zipformer/zipformer.py
Symbolic link
1
egs/aishell/ASR/zipformer/zipformer.py
Symbolic link
@ -0,0 +1 @@
|
||||
../../../librispeech/ASR/zipformer/zipformer.py
|
@ -1,7 +1,11 @@
|
||||
|
||||
# Introduction
|
||||
|
||||
This recipe includes some different ASR models trained with Aishell2.
|
||||
This recipe contains various different ASR models trained with Aishell2.
|
||||
|
||||
In AISHELL-2, 1000 hours of clean read-speech data from iOS is published, which is free for academic usage. On top of AISHELL-2 corpus, an improved recipe is developed and released, containing key components for industrial applications, such as Chinese word segmentation, flexible vocabulary expension and phone set transformation etc. Pipelines support various state-of-the-art techniques, such as time-delayed neural networks and Lattic-Free MMI objective funciton. In addition, we also release dev and test data from other channels (Android and Mic).
|
||||
|
||||
(From [AISHELL-2: Transforming Mandarin ASR Research Into Industrial Scale](https://arxiv.org/abs/1808.10583))
|
||||
|
||||
[./RESULTS.md](./RESULTS.md) contains the latest results.
|
||||
|
||||
|
@ -1,8 +1,8 @@
|
||||
## Results
|
||||
|
||||
### Aishell2 char-based training results (Pruned Transducer 5)
|
||||
### Aishell2 char-based training results
|
||||
|
||||
#### 2022-07-11
|
||||
#### Pruned transducer stateless 5
|
||||
|
||||
Using the codes from this commit https://github.com/k2-fsa/icefall/pull/465.
|
||||
|
||||
@ -41,9 +41,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
The decoding command is:
|
||||
```bash
|
||||
for method in greedy_search modified_beam_search \
|
||||
fast_beam_search fast_beam_search_nbest \
|
||||
fast_beam_search_nbest_oracle fast_beam_search_nbest_LG; do
|
||||
for method in greedy_search modified_beam_search fast_beam_search fast_beam_search_nbest fast_beam_search_nbest_oracle fast_beam_search_nbest_LG; do
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 25 \
|
||||
--avg 5 \
|
||||
|
@ -7,7 +7,9 @@ set -eou pipefail
|
||||
|
||||
nj=30
|
||||
stage=0
|
||||
stop_stage=5
|
||||
stop_stage=7
|
||||
perturb_speed=true
|
||||
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, you need to apply aishell2 through
|
||||
@ -101,7 +103,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "Stage 3: Compute fbank for aishell2"
|
||||
if [ ! -f data/fbank/.aishell2.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_aishell2.py --perturb-speed True
|
||||
./local/compute_fbank_aishell2.py --perturb-speed ${perturb_speed}
|
||||
touch data/fbank/.aishell2.done
|
||||
fi
|
||||
fi
|
||||
|
@ -1,7 +1,11 @@
|
||||
|
||||
# Introduction
|
||||
|
||||
This recipe includes some different ASR models trained with Aishell4 (including S, M and L three subsets).
|
||||
This recipe contains some various ASR models trained with Aishell4 (including S, M and L three subsets).
|
||||
|
||||
The AISHELL-4 is a sizable real-recorded Mandarin speech dataset collected by 8-channel circular microphone array for speech processing in conference scenarios. The dataset consists of 211 recorded meeting sessions, each containing 4 to 8 speakers, with a total length of 120 hours. This dataset aims to bridge the advanced research on multi-speaker processing and the practical application scenario in three aspects. With real recorded meetings, AISHELL-4 provides realistic acoustics and rich natural speech characteristics in conversation such as short pause, speech overlap, quick speaker turn, noise, etc. Meanwhile, the accurate transcription and speaker voice activity are provided for each meeting in AISHELL-4. This allows the researchers to explore different aspects in meeting processing, ranging from individual tasks such as speech front-end processing, speech recognition and speaker diarization, to multi-modality modeling and joint optimization of relevant tasks.
|
||||
|
||||
(From [Open Speech and Language Resources](https://www.openslr.org/111/))
|
||||
|
||||
[./RESULTS.md](./RESULTS.md) contains the latest results.
|
||||
|
||||
|
@ -7,6 +7,8 @@ set -eou pipefail
|
||||
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
perturb_speed=true
|
||||
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
@ -107,7 +109,7 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Compute fbank for aishell4"
|
||||
if [ ! -f data/fbank/.aishell4.done ]; then
|
||||
mkdir -p data/fbank
|
||||
./local/compute_fbank_aishell4.py --perturb-speed True
|
||||
./local/compute_fbank_aishell4.py --perturb-speed ${perturb_speed}
|
||||
touch data/fbank/.aishell4.done
|
||||
fi
|
||||
fi
|
||||
|
@ -306,7 +306,7 @@ class Aishell4AsrDataModule:
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
buffer_size=30000,
|
||||
buffer_size=100000,
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
else:
|
||||
|
1
egs/aishell4/ASR/pruned_transducer_stateless5/local
Symbolic link
1
egs/aishell4/ASR/pruned_transducer_stateless5/local
Symbolic link
@ -0,0 +1 @@
|
||||
../local
|
Loading…
x
Reference in New Issue
Block a user