mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
122 lines
2.8 KiB
Markdown
122 lines
2.8 KiB
Markdown
|
|
Run `./prepare.sh` to prepare the data.
|
|
|
|
Run `./xxx_train.py` (to be added) to train a model.
|
|
|
|
## Conformer-CTC
|
|
Results of the pre-trained model from
|
|
`<https://huggingface.co/GuoLiyong/snowfall_bpe_model/tree/main/exp-duration-200-feat_batchnorm-bpe-lrfactor5.0-conformer-512-8-noam>`
|
|
are given below
|
|
|
|
### HLG - no LM rescoring
|
|
|
|
(output beam size is 8)
|
|
|
|
#### 1-best decoding
|
|
|
|
```
|
|
[test-clean-no_rescore] %WER 3.15% [1656 / 52576, 127 ins, 377 del, 1152 sub ]
|
|
[test-other-no_rescore] %WER 7.03% [3682 / 52343, 220 ins, 1024 del, 2438 sub ]
|
|
```
|
|
|
|
#### n-best decoding
|
|
|
|
For n=100,
|
|
|
|
```
|
|
[test-clean-no_rescore-100] %WER 3.15% [1656 / 52576, 127 ins, 377 del, 1152 sub ]
|
|
[test-other-no_rescore-100] %WER 7.14% [3737 / 52343, 275 ins, 1020 del, 2442 sub ]
|
|
```
|
|
|
|
For n=200,
|
|
|
|
```
|
|
[test-clean-no_rescore-200] %WER 3.16% [1660 / 52576, 125 ins, 378 del, 1157 sub ]
|
|
[test-other-no_rescore-200] %WER 7.04% [3684 / 52343, 228 ins, 1012 del, 2444 sub ]
|
|
```
|
|
|
|
### HLG - with LM rescoring
|
|
|
|
#### Whole lattice rescoring
|
|
|
|
```
|
|
[test-clean-lm_scale_0.8] %WER 2.77% [1456 / 52576, 150 ins, 210 del, 1096 sub ]
|
|
[test-other-lm_scale_0.8] %WER 6.23% [3262 / 52343, 246 ins, 635 del, 2381 sub ]
|
|
```
|
|
|
|
WERs of different LM scales are:
|
|
|
|
```
|
|
For test-clean, WER of different settings are:
|
|
lm_scale_0.8 2.77 best for test-clean
|
|
lm_scale_0.9 2.87
|
|
lm_scale_1.0 3.06
|
|
lm_scale_1.1 3.34
|
|
lm_scale_1.2 3.71
|
|
lm_scale_1.3 4.18
|
|
lm_scale_1.4 4.8
|
|
lm_scale_1.5 5.48
|
|
lm_scale_1.6 6.08
|
|
lm_scale_1.7 6.79
|
|
lm_scale_1.8 7.49
|
|
lm_scale_1.9 8.14
|
|
lm_scale_2.0 8.82
|
|
|
|
For test-other, WER of different settings are:
|
|
lm_scale_0.8 6.23 best for test-other
|
|
lm_scale_0.9 6.37
|
|
lm_scale_1.0 6.62
|
|
lm_scale_1.1 6.99
|
|
lm_scale_1.2 7.46
|
|
lm_scale_1.3 8.13
|
|
lm_scale_1.4 8.84
|
|
lm_scale_1.5 9.61
|
|
lm_scale_1.6 10.32
|
|
lm_scale_1.7 11.17
|
|
lm_scale_1.8 12.12
|
|
lm_scale_1.9 12.93
|
|
lm_scale_2.0 13.77
|
|
```
|
|
|
|
#### n-best LM rescoring
|
|
|
|
n = 100
|
|
|
|
```
|
|
[test-clean-lm_scale_0.8] %WER 2.79% [1469 / 52576, 149 ins, 212 del, 1108 sub ]
|
|
[test-other-lm_scale_0.8] %WER 6.36% [3329 / 52343, 259 ins, 666 del, 2404 sub ]
|
|
```
|
|
|
|
WERs of different LM scales are:
|
|
|
|
```
|
|
For test-clean, WER of different settings are:
|
|
lm_scale_0.8 2.79 best for test-clean
|
|
lm_scale_0.9 2.89
|
|
lm_scale_1.0 3.03
|
|
lm_scale_1.1 3.28
|
|
lm_scale_1.2 3.52
|
|
lm_scale_1.3 3.78
|
|
lm_scale_1.4 4.04
|
|
lm_scale_1.5 4.24
|
|
lm_scale_1.6 4.45
|
|
lm_scale_1.7 4.58
|
|
lm_scale_1.8 4.7
|
|
lm_scale_1.9 4.8
|
|
lm_scale_2.0 4.92
|
|
For test-other, WER of different settings are:
|
|
lm_scale_0.8 6.36 best for test-other
|
|
lm_scale_0.9 6.45
|
|
lm_scale_1.0 6.64
|
|
lm_scale_1.1 6.92
|
|
lm_scale_1.2 7.25
|
|
lm_scale_1.3 7.59
|
|
lm_scale_1.4 7.88
|
|
lm_scale_1.5 8.13
|
|
lm_scale_1.6 8.36
|
|
lm_scale_1.7 8.54
|
|
lm_scale_1.8 8.71
|
|
lm_scale_1.9 8.88
|
|
lm_scale_2.0 9.02
|
|
```
|