icefall/egs/librispeech/ASR/RESULTS.md
Zengwei Yao b3e6bf66df
Add modified beam search decoding for streaming inference with emformer model (#327)
* Fix torch.nn.Embedding error for torch below 1.8.0

* Changes to fbank computation, use lilcom chunky writer

* Add min in q,k,v of attention

* Remove learnable offset, use relu instead.

* Experiments based on SpecAugment change

* Merge specaug change from Mingshuang.

* Use much more aggressive SpecAug setup

* Fix to num_feature_masks bug I introduced; reduce max_frames_mask_fraction 0.4->0.3

* Change p=0.5->0.9, mask_fraction 0.3->0.2

* Change p=0.9 to p=0.8 in SpecAug

* Fix num_time_masks code; revert 0.8 to 0.9

* Change max_frames from 0.2 to 0.15

* Remove ReLU in attention

* Adding diagnostics code...

* Refactor/simplify ConformerEncoder

* First version of rand-combine iterated-training-like idea.

* Improvements to diagnostics (RE those with 1 dim

* Add pelu to this good-performing setup..

* Small bug fixes/imports

* Add baseline for the PeLU expt, keeping only the small normalization-related changes.

* pelu_base->expscale, add 2xExpScale in subsampling, and in feedforward units.

* Double learning rate of exp-scale units

* Combine ExpScale and swish for memory reduction

* Add import

* Fix backprop bug

* Fix bug in diagnostics

* Increase scale on Scale from 4 to 20

* Increase scale from 20 to 50.

* Fix duplicate Swish; replace norm+swish with swish+exp-scale in convolution module

* Reduce scale from 50 to 20

* Add deriv-balancing code

* Double the threshold in brelu; slightly increase max_factor.

* Fix exp dir

* Convert swish nonlinearities to ReLU

* Replace relu with swish-squared.

* Restore ConvolutionModule to state before changes; change all Swish,Swish(Swish) to SwishOffset.

* Replace norm on input layer with scale of 0.1.

* Extensions to diagnostics code

* Update diagnostics

* Add BasicNorm module

* Replace most normalizations with scales (still have norm in conv)

* Change exp dir

* Replace norm in ConvolutionModule with a scaling factor.

* use nonzero threshold in DerivBalancer

* Add min-abs-value 0.2

* Fix dirname

* Change min-abs threshold from 0.2 to 0.5

* Scale up pos_bias_u and pos_bias_v before use.

* Reduce max_factor to 0.01

* Fix q*scaling logic

* Change max_factor in DerivBalancer from 0.025 to 0.01; fix scaling code.

* init 1st conv module to smaller variance

* Change how scales are applied; fix residual bug

* Reduce min_abs from 0.5 to 0.2

* Introduce in_scale=0.5 for SwishExpScale

* Fix scale from 0.5 to 2.0 as I really intended..

* Set scaling on SwishExpScale

* Add identity pre_norm_final for diagnostics.

* Add learnable post-scale for mha

* Fix self.post-scale-mha

* Another rework, use scales on linear/conv

* Change dir name

* Reduce initial scaling of modules

* Bug-fix RE bias

* Cosmetic change

* Reduce initial_scale.

* Replace ExpScaleRelu with DoubleSwish()

* DoubleSwish fix

* Use learnable scales for joiner and decoder

* Add max-abs-value constraint in DerivBalancer

* Add max-abs-value

* Change dir name

* Remove ExpScale in feedforward layes.

* Reduce max-abs limit from 1000 to 100; introduce 2 DerivBalancer modules in conv layer.

* Make DoubleSwish more memory efficient

* Reduce constraints from deriv-balancer in ConvModule.

* Add warmup mode

* Remove max-positive constraint in deriv-balancing; add second DerivBalancer in conv module.

* Add some extra info to diagnostics

* Add deriv-balancer at output of embedding.

* Add more stats.

* Make epsilon in BasicNorm learnable, optionally.

* Draft of 0mean changes..

* Rework of initialization

* Fix typo

* Remove dead code

* Modifying initialization from normal->uniform; add initial_scale when initializing

* bug fix re sqrt

* Remove xscale from pos_embedding

* Remove some dead code.

* Cosmetic changes/renaming things

* Start adding some files..

* Add more files..

* update decode.py file type

* Add remaining files in pruned_transducer_stateless2

* Fix diagnostics-getting code

* Scale down pruned loss in warmup mode

* Reduce warmup scale on pruned loss form 0.1 to 0.01.

* Remove scale_speed, make swish deriv more efficient.

* Cosmetic changes to swish

* Double warm_step

* Fix bug with import

* Change initial std from 0.05 to 0.025.

* Set also scale for embedding to 0.025.

* Remove logging code that broke with newer Lhotse; fix bug with pruned_loss

* Add norm+balancer to VggSubsampling

* Incorporate changes from master into pruned_transducer_stateless2.

* Add max-abs=6, debugged version

* Change 0.025,0.05 to 0.01 in initializations

* Fix balancer code

* Whitespace fix

* Reduce initial pruned_loss scale from 0.01 to 0.0

* Increase warm_step (and valid_interval)

* Change max-abs from 6 to 10

* Change how warmup works.

* Add changes from master to decode.py, train.py

* Simplify the warmup code; max_abs 10->6

* Make warmup work by scaling layer contributions; leave residual layer-drop

* Fix bug

* Fix test mode with random layer dropout

* Add random-number-setting function in dataloader

* Fix/patch how fix_random_seed() is imported.

* Reduce layer-drop prob

* Reduce layer-drop prob after warmup to 1 in 100

* Change power of lr-schedule from -0.5 to -0.333

* Increase model_warm_step to 4k

* Change max-keep-prob to 0.95

* Refactoring and simplifying conformer and frontend

* Rework conformer, remove some code.

* Reduce 1st conv channels from 64 to 32

* Add another convolutional layer

* Fix padding bug

* Remove dropout in output layer

* Reduce speed of some components

* Initial refactoring to remove unnecessary vocab_size

* Fix RE identity

* Bug-fix

* Add final dropout to conformer

* Remove some un-used code

* Replace nn.Linear with ScaledLinear in simple joiner

* Make 2 projections..

* Reduce initial_speed

* Use initial_speed=0.5

* Reduce initial_speed further from 0.5 to 0.25

* Reduce initial_speed from 0.5 to 0.25

* Change how warmup is applied.

* Bug fix to warmup_scale

* Fix test-mode

* Remove final dropout

* Make layer dropout rate 0.075, was 0.1.

* First draft of model rework

* Various bug fixes

* Change learning speed of simple_lm_proj

* Revert transducer_stateless/ to state in upstream/master

* Fix to joiner to allow different dims

* Some cleanups

* Make training more efficient, avoid redoing some projections.

* Change how warm-step is set

* First draft of new approach to learning rates + init

* Some fixes..

* Change initialization to 0.25

* Fix type of parameter

* Fix weight decay formula by adding 1/1-beta

* Fix weight decay formula by adding 1/1-beta

* Fix checkpoint-writing

* Fix to reading scheudler from optim

* Simplified optimizer, rework somet things..

* Reduce model_warm_step from 4k to 3k

* Fix bug in lambda

* Bug-fix RE sign of target_rms

* Changing initial_speed from 0.25 to 01

* Change some defaults in LR-setting rule.

* Remove initial_speed

* Set new scheduler

* Change exponential part of lrate to be epoch based

* Fix bug

* Set 2n rule..

* Implement 2o schedule

* Make lrate rule more symmetric

* Implement 2p version of learning rate schedule.

* Refactor how learning rate is set.

* Fix import

* Modify init (#301)

* update icefall/__init__.py to import more common functions.

* update icefall/__init__.py

* make imports style consistent.

* exclude black check for icefall/__init__.py in pyproject.toml.

* Minor fixes for logging (#296)

* Minor fixes for logging

* Minor fix

* Fix dir names

* Modify beam search to be efficient with current joienr

* Fix adding learning rate to tensorboard

* Fix docs in optim.py

* Support mix precision training on the reworked model (#305)

* Add mix precision support

* Minor fixes

* Minor fixes

* Minor fixes

* Tedlium3 pruned transducer stateless (#261)

* update tedlium3-pruned-transducer-stateless-codes

* update README.md

* update README.md

* add fast beam search for decoding

* do a change for RESULTS.md

* do a change for RESULTS.md

* do a fix

* do some changes for pruned RNN-T

* Add mix precision support

* Minor fixes

* Minor fixes

* Updating RESULTS.md; fix in beam_search.py

* Fix rebase

* Code style check for librispeech pruned transducer stateless2 (#308)

* Update results for tedlium3 pruned RNN-T (#307)

* Update README.md

* Fix CI errors. (#310)

* Add more results

* Fix tensorboard log location

* Add one more epoch of full expt

* fix comments

* Add results for mixed precision with max-duration 300

* Changes for pretrained.py (tedlium3 pruned RNN-T) (#311)

* GigaSpeech recipe (#120)

* initial commit

* support download, data prep, and fbank

* on-the-fly feature extraction by default

* support BPE based lang

* support HLG for BPE

* small fix

* small fix

* chunked feature extraction by default

* Compute features for GigaSpeech by splitting the manifest.

* Fixes after review.

* Split manifests into 2000 pieces.

* set audio duration mismatch tolerance to 0.01

* small fix

* add conformer training recipe

* Add conformer.py without pre-commit checking

* lazy loading and use SingleCutSampler

* DynamicBucketingSampler

* use KaldifeatFbank to compute fbank for musan

* use pretrained language model and lexicon

* use 3gram to decode, 4gram to rescore

* Add decode.py

* Update .flake8

* Delete compute_fbank_gigaspeech.py

* Use BucketingSampler for valid and test dataloader

* Update params in train.py

* Use bpe_500

* update params in decode.py

* Decrease num_paths while CUDA OOM

* Added README

* Update RESULTS

* black

* Decrease num_paths while CUDA OOM

* Decode with post-processing

* Update results

* Remove lazy_load option

* Use default `storage_type`

* Keep the original tolerance

* Use split-lazy

* black

* Update pretrained model

Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>

* Add LG decoding (#277)

* Add LG decoding

* Add log weight pushing

* Minor fixes

* Support computing RNN-T loss with torchaudio (#316)

* Support modified beam search decoding for streaming inference with Emformer model.

* Formatted imports.

* Update results for torchaudio RNN-T. (#322)

* Fixed streaming decoding codes for emformer model.

* Fixed docs.

* Sorted imports for transducer_emformer/streaming_feature_extractor.py

* Minor fix for transducer_emformer/streaming_feature_extractor.py

Co-authored-by: pkufool <wkang@pku.org.cn>
Co-authored-by: Daniel Povey <dpovey@gmail.com>
Co-authored-by: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com>
Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com>
Co-authored-by: Guo Liyong <guonwpu@qq.com>
Co-authored-by: Wang, Guanbo <wgb14@outlook.com>
2022-04-22 18:06:07 +08:00

24 KiB

Results

LibriSpeech BPE training results (Pruned Transducer 2)

pruned_transducer_stateless2 This is with a reworked version of the conformer encoder, with many changes.

Training on fulll librispeech

Using commit 34aad74a2c849542dd5f6359c9e6b527e8782fd6. See https://github.com/k2-fsa/icefall/pull/288

The WERs are:

test-clean test-other comment
greedy search (max sym per frame 1) 2.62 6.37 --epoch 25 --avg 8 --max-duration 600
fast beam search 2.61 6.17 --epoch 25 --avg 8 --max-duration 600 --decoding-method fast_beam_search
modified beam search 2.59 6.19 --epoch 25 --avg 8 --max-duration 600 --decoding-method modified_beam_search
greedy search (max sym per frame 1) 2.70 6.04 --epoch 34 --avg 10 --max-duration 600
fast beam search 2.66 6.00 --epoch 34 --avg 10 --max-duration 600 --decoding-method fast_beam_search
greedy search (max sym per frame 1) 2.62 6.03 --epoch 38 --avg 10 --max-duration 600
fast beam search 2.57 5.95 --epoch 38 --avg 10 --max-duration 600 --decoding-method fast_beam_search

The train and decode commands are: python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp --world-size 8 --num-epochs 26 --full-libri 1 --max-duration 300 and: python3 ./pruned_transducer_stateless2/decode.py --exp-dir pruned_transducer_stateless2/exp --epoch 25 --avg 8 --bpe-model ./data/lang_bpe_500/bpe.model --max-duration 600

The Tensorboard log is at https://tensorboard.dev/experiment/Xoz0oABMTWewo1slNFXkyA (apologies, log starts only from epoch 3).

Training on train-clean-100:

Trained with 1 job: python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp_100h_ws1 --world-size 1 --num-epochs 40 --full-libri 0 --max-duration 300 and decoded with: python3 ./pruned_transducer_stateless2/decode.py --exp-dir pruned_transducer_stateless2/exp_100h_ws1 --epoch 19 --avg 8 --bpe-model ./data/lang_bpe_500/bpe.model --max-duration 600.

The Tensorboard log is at https://tensorboard.dev/experiment/AhnhooUBRPqTnaggoqo7lg (learning rate schedule is not visible due to a since-fixed bug).

test-clean test-other comment
greedy search (max sym per frame 1) 7.12 18.42 --epoch 19 --avg 8
greedy search (max sym per frame 1) 6.71 17.77 --epoch 29 --avg 8
greedy search (max sym per frame 1) 6.64 17.19 --epoch 39 --avg 10
fast beam search 6.58 17.27 --epoch 29 --avg 8 --decoding-method fast_beam_search
fast beam search 6.53 16.82 --epoch 39 --avg 10 --decoding-method fast_beam_search

Trained with 2 jobs: python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp_100h_ws2 --world-size 2 --num-epochs 40 --full-libri 0 --max-duration 300 and decoded with: python3 ./pruned_transducer_stateless2/decode.py --exp-dir pruned_transducer_stateless2/exp_100h_ws2 --epoch 19 --avg 8 --bpe-model ./data/lang_bpe_500/bpe.model --max-duration 600.

The Tensorboard log is at https://tensorboard.dev/experiment/dvOC9wsrSdWrAIdsebJILg/ (learning rate schedule is not visible due to a since-fixed bug).

test-clean test-other comment
greedy search (max sym per frame 1) 7.05 18.77 --epoch 19 --avg 8
greedy search (max sym per frame 1) 6.82 18.14 --epoch 29 --avg 8
greedy search (max sym per frame 1) 6.81 17.66 --epoch 30 --avg 10

Trained with 4 jobs: python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp_100h_ws4 --world-size 4 --num-epochs 40 --full-libri 0 --max-duration 300 and decoded with: python3 ./pruned_transducer_stateless2/decode.py --exp-dir pruned_transducer_stateless2/exp_100h_ws4 --epoch 19 --avg 8 --bpe-model ./data/lang_bpe_500/bpe.model --max-duration 600.

The Tensorboard log is at https://tensorboard.dev/experiment/a3T0TyC0R5aLj5bmFbRErA/ (learning rate schedule is not visible due to a since-fixed bug).

test-clean test-other comment
greedy search (max sym per frame 1) 7.31 19.55 --epoch 19 --avg 8
greedy search (max sym per frame 1) 7.08 18.59 --epoch 29 --avg 8
greedy search (max sym per frame 1) 6.86 18.29 --epoch 30 --avg 10

Trained with 1 job, with --use-fp16=True --max-duration=300 i.e. with half-precision floats (but without increasing max-duration), after merging https://github.com/k2-fsa/icefall/pull/305. Train command was python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp_100h_fp16 --world-size 1 --num-epochs 40 --full-libri 0 --max-duration 300 --use-fp16 True

The Tensorboard log is at https://tensorboard.dev/experiment/DAtGG9lpQJCROUDwPNxwpA

test-clean test-other comment
greedy search (max sym per frame 1) 7.10 18.57 --epoch 19 --avg 8
greedy search (max sym per frame 1) 6.81 17.84 --epoch 29 --avg 8
greedy search (max sym per frame 1) 6.63 17.39 --epoch 30 --avg 10

Trained with 1 job, with --use-fp16=True --max-duration=500, i.e. with half-precision floats and max-duration increased from 300 to 500, after merging https://github.com/k2-fsa/icefall/pull/305. Train command was python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp_100h_fp16 --world-size 1 --num-epochs 40 --full-libri 0 --max-duration 500 --use-fp16 True

The Tensorboard log is at https://tensorboard.dev/experiment/Km7QBHYnSLWs4qQnAJWsaA

test-clean test-other comment
greedy search (max sym per frame 1) 7.10 18.79 --epoch 19 --avg 8
greedy search (max sym per frame 1) 6.92 18.16 --epoch 29 --avg 8
greedy search (max sym per frame 1) 6.89 17.75 --epoch 30 --avg 10

LibriSpeech BPE training results (Pruned Transducer)

Conformer encoder + non-current decoder. The decoder contains only an embedding layer, a Conv1d (with kernel size 2) and a linear layer (to transform tensor dim).

2022-03-12

pruned_transducer_stateless

Using commit 1603744469d167d848e074f2ea98c587153205fa. See https://github.com/k2-fsa/icefall/pull/248

The WERs are:

test-clean test-other comment
greedy search (max sym per frame 1) 2.62 6.37 --epoch 42 --avg 11 --max-duration 100
greedy search (max sym per frame 2) 2.62 6.37 --epoch 42 --avg 11 --max-duration 100
greedy search (max sym per frame 3) 2.62 6.37 --epoch 42 --avg 11 --max-duration 100
modified beam search (beam size 4) 2.56 6.27 --epoch 42 --avg 11 --max-duration 100
beam search (beam size 4) 2.57 6.27 --epoch 42 --avg 11 --max-duration 100

The decoding time for test-clean and test-other is given below: (A V100 GPU with 32 GB RAM is used for decoding. Note: Not all GPU RAM is used during decoding.)

decoding method test-clean (seconds) test-other (seconds)
greedy search (--max-sym-per-frame=1) 160 159
greedy search (--max-sym-per-frame=2) 184 177
greedy search (--max-sym-per-frame=3) 210 213
modified beam search (--beam-size 4) 273 269
beam search (--beam-size 4) 2741 2221

We recommend you to use modified_beam_search.

Training command:

cd egs/librispeech/ASR/
./prepare.sh

export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"

. path.sh

./pruned_transducer_stateless/train.py \
  --world-size 8 \
  --num-epochs 60 \
  --start-epoch 0 \
  --exp-dir pruned_transducer_stateless/exp \
  --full-libri 1 \
  --max-duration 300 \
  --prune-range 5 \
  --lr-factor 5 \
  --lm-scale 0.25

The tensorboard training log can be found at https://tensorboard.dev/experiment/WKRFY5fYSzaVBHahenpNlA/

The command for decoding is:

epoch=42
avg=11
sym=1

# greedy search

./pruned_transducer_stateless/decode.py \
  --epoch $epoch \
  --avg $avg \
  --exp-dir ./pruned_transducer_stateless/exp \
  --max-duration 100 \
  --decoding-method greedy_search \
  --beam-size 4 \
  --max-sym-per-frame $sym

# modified beam search
./pruned_transducer_stateless/decode.py \
  --epoch $epoch \
  --avg $avg \
  --exp-dir ./pruned_transducer_stateless/exp \
  --max-duration 100 \
  --decoding-method modified_beam_search \
  --beam-size 4

# beam search
# (not recommended)
./pruned_transducer_stateless/decode.py \
  --epoch $epoch \
  --avg $avg \
  --exp-dir ./pruned_transducer_stateless/exp \
  --max-duration 100 \
  --decoding-method beam_search \
  --beam-size 4

You can find a pre-trained model, decoding logs, and decoding results at https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12

2022-02-18

pruned_transducer_stateless

The WERs are

test-clean test-other comment
greedy search 2.85 6.98 --epoch 28 --avg 15 --max-duration 100

The training command for reproducing is given below:

export CUDA_VISIBLE_DEVICES="0,1,2,3"

./pruned_transducer_stateless/train.py \
  --world-size 4 \
  --num-epochs 30 \
  --start-epoch 0 \
  --exp-dir pruned_transducer_stateless/exp \
  --full-libri 1 \
  --max-duration 300 \
  --prune-range 5 \
  --lr-factor 5 \
  --lm-scale 0.25 \

The tensorboard training log can be found at https://tensorboard.dev/experiment/ejG7VpakRYePNNj6AbDEUw/#scalars

The decoding command is:

epoch=28
avg=15

## greedy search
./pruned_transducer_stateless/decode.py \
  --epoch $epoch \
  --avg $avg \
  --exp-dir pruned_transducer_stateless/exp \
  --max-duration 100

LibriSpeech BPE training results (Transducer)

Conformer encoder + embedding decoder

Conformer encoder + non-recurrent decoder. The decoder contains only an embedding layer and a Conv1d (with kernel size 2).

See

2022-03-01

Using commit 2332ba312d7ce72f08c7bac1e3312f7e3dd722dc.

It uses GigaSpeech as extra training data. 20% of the time it selects a batch from L subset of GigaSpeech and 80% of the time it selects a batch from LibriSpeech.

The WERs are

test-clean test-other comment
greedy search (max sym per frame 1) 2.64 6.55 --epoch 39 --avg 15 --max-duration 100
modified beam search (beam size 4) 2.61 6.46 --epoch 39 --avg 15 --max-duration 100

The training command for reproducing is given below:

cd egs/librispeech/ASR/
./prepare.sh
./prepare_giga_speech.sh

export CUDA_VISIBLE_DEVICES="0,1,2,3"

./transducer_stateless_multi_datasets/train.py \
  --world-size 4 \
  --num-epochs 40 \
  --start-epoch 0 \
  --exp-dir transducer_stateless_multi_datasets/exp-full-2 \
  --full-libri 1 \
  --max-duration 300 \
  --lr-factor 5 \
  --bpe-model data/lang_bpe_500/bpe.model \
  --modified-transducer-prob 0.25 \
  --giga-prob 0.2

The tensorboard training log can be found at https://tensorboard.dev/experiment/xmo5oCgrRVelH9dCeOkYBg/

The decoding command is:

epoch=39
avg=15
sym=1

# greedy search
./transducer_stateless_multi_datasets/decode.py \
  --epoch $epoch \
  --avg $avg \
  --exp-dir transducer_stateless_multi_datasets/exp-full-2 \
  --bpe-model ./data/lang_bpe_500/bpe.model \
  --max-duration 100 \
  --context-size 2 \
  --max-sym-per-frame $sym

# modified beam search
./transducer_stateless_multi_datasets/decode.py \
  --epoch $epoch \
  --avg $avg \
  --exp-dir transducer_stateless_multi_datasets/exp-full-2 \
  --bpe-model ./data/lang_bpe_500/bpe.model \
  --max-duration 100 \
  --context-size 2 \
  --decoding-method modified_beam_search \
  --beam-size 4

You can find a pretrained model by visiting https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01

2022-04-19

transducer_stateless2

This version uses torchaudio's RNN-T loss.

Using commit fce7f3cd9a486405ee008bcbe4999264f27774a3. See https://github.com/k2-fsa/icefall/pull/316

test-clean test-other comment
greedy search (max sym per frame 1) 2.65 6.30 --epoch 59 --avg 10 --max-duration 600
greedy search (max sym per frame 2) 2.62 6.23 --epoch 59 --avg 10 --max-duration 100
greedy search (max sym per frame 3) 2.62 6.23 --epoch 59 --avg 10 --max-duration 100
modified beam search 2.63 6.15 --epoch 59 --avg 10 --max-duration 100 --decoding-method modified_beam_search
beam search 2.59 6.15 --epoch 59 --avg 10 --max-duration 100 --decoding-method beam_search

Note: This model is trained with standard RNN-T loss. Neither modified transducer nor pruned RNN-T is used. You can see that there is a performance degradation in WER when we limit the max symbol per frame to 1.

The number of active paths in modified_beam_search and beam_search is 4.

The training and decoding commands are:

export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"

./transducer_stateless2/train.py \
  --world-size 8 \
  --num-epochs 60 \
  --start-epoch 0 \
  --exp-dir transducer_stateless2/exp-2 \
  --full-libri 1 \
  --max-duration 300 \
  --lr-factor 5

epoch=59
avg=10
# greedy search
./transducer_stateless2/decode.py \
  --epoch $epoch \
  --avg $avg \
  --exp-dir ./transducer_stateless2/exp-2 \
  --max-duration 600 \
  --decoding-method greedy_search \
  --max-sym-per-frame 1

# modified beam search
./transducer_stateless2/decode.py \
  --epoch $epoch \
  --avg $avg \
  --exp-dir ./transducer_stateless2/exp-2 \
  --max-duration 100 \
  --decoding-method modified_beam_search \

# beam search
./transducer_stateless2/decode.py \
  --epoch $epoch \
  --avg $avg \
  --exp-dir ./transducer_stateless2/exp-2 \
  --max-duration 100 \
  --decoding-method beam_search \

The tensorboard log is at https://tensorboard.dev/experiment/oAlle3dxQD2EY8ePwjIGuw/.

You can find a pre-trained model, decoding logs, and decoding results at https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless2-torchaudio-2022-04-19

2022-02-07

Using commit a8150021e01d34ecbd6198fe03a57eacf47a16f2.

The WERs are

test-clean test-other comment
greedy search (max sym per frame 1) 2.67 6.67 --epoch 63 --avg 19 --max-duration 100
greedy search (max sym per frame 2) 2.67 6.67 --epoch 63 --avg 19 --max-duration 100
greedy search (max sym per frame 3) 2.67 6.67 --epoch 63 --avg 19 --max-duration 100
modified beam search (beam size 4) 2.67 6.57 --epoch 63 --avg 19 --max-duration 100

The training command for reproducing is given below:

cd egs/librispeech/ASR/
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./transducer_stateless/train.py \
  --world-size 4 \
  --num-epochs 76 \
  --start-epoch 0 \
  --exp-dir transducer_stateless/exp-full \
  --full-libri 1 \
  --max-duration 300 \
  --lr-factor 5 \
  --bpe-model data/lang_bpe_500/bpe.model \
  --modified-transducer-prob 0.25

The tensorboard training log can be found at https://tensorboard.dev/experiment/qgvWkbF2R46FYA6ZMNmOjA/#scalars

The decoding command is:

epoch=63
avg=19

## greedy search
for sym in 1 2 3; do
  ./transducer_stateless/decode.py \
    --epoch $epoch \
    --avg $avg \
    --exp-dir transducer_stateless/exp-full \
    --bpe-model ./data/lang_bpe_500/bpe.model \
    --max-duration 100 \
    --max-sym-per-frame $sym
done

## modified beam search

./transducer_stateless/decode.py \
  --epoch $epoch \
  --avg $avg \
  --exp-dir transducer_stateless/exp-full \
  --bpe-model ./data/lang_bpe_500/bpe.model \
  --max-duration 100 \
  --context-size 2 \
  --decoding-method modified_beam_search \
  --beam-size 4

You can find a pretrained model by visiting https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07

Conformer encoder + LSTM decoder

Using commit 8187d6236c2926500da5ee854f758e621df803cc.

Conformer encoder + LSTM decoder.

The best WER is

test-clean test-other
WER 3.07 7.51

using --epoch 34 --avg 11 with greedy search.

The training command to reproduce the above WER is:

export CUDA_VISIBLE_DEVICES="0,1,2,3"

./transducer/train.py \
  --world-size 4 \
  --num-epochs 35 \
  --start-epoch 0 \
  --exp-dir transducer/exp-lr-2.5-full \
  --full-libri 1 \
  --max-duration 180 \
  --lr-factor 2.5

The decoding command is:

epoch=34
avg=11

./transducer/decode.py \
  --epoch $epoch \
  --avg $avg \
  --exp-dir transducer/exp-lr-2.5-full \
  --bpe-model ./data/lang_bpe_500/bpe.model \
  --max-duration 100

You can find the tensorboard log at: https://tensorboard.dev/experiment/D7NQc3xqTpyVmWi5FnWjrA

LibriSpeech BPE training results (Conformer-CTC)

2021-11-09

The best WER, as of 2021-11-09, for the librispeech test dataset is below (using HLG decoding + n-gram LM rescoring + attention decoder rescoring):

test-clean test-other
WER 2.42 5.73

Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:

ngram_lm_scale attention_scale
2.0 2.0

To reproduce the above result, use the following commands for training:

cd egs/librispeech/ASR/conformer_ctc
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./conformer_ctc/train.py \
  --exp-dir conformer_ctc/exp_500_att0.8 \
  --lang-dir data/lang_bpe_500 \
  --att-rate 0.8 \
  --full-libri 1 \
  --max-duration 200 \
  --concatenate-cuts 0 \
  --world-size 4 \
  --bucketing-sampler 1 \
  --start-epoch 0 \
  --num-epochs 90
# Note: It trains for 90 epochs, but the best WER is at epoch-77.pt

and the following command for decoding

./conformer_ctc/decode.py \
  --exp-dir conformer_ctc/exp_500_att0.8 \
  --lang-dir data/lang_bpe_500 \
  --max-duration 30 \
  --concatenate-cuts 0 \
  --bucketing-sampler 1 \
  --num-paths 1000 \
  --epoch 77 \
  --avg 55 \
  --method attention-decoder \
  --nbest-scale 0.5

You can find the pre-trained model by visiting https://huggingface.co/csukuangfj/icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09

The tensorboard log for training is available at https://tensorboard.dev/experiment/hZDWrZfaSqOMqtW0NEfXKg/#scalars

2021-08-19

(Wei Kang): Result of https://github.com/k2-fsa/icefall/pull/13

TensorBoard log is available at https://tensorboard.dev/experiment/GnRzq8WWQW62dK4bklXBTg/#scalars

Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc

The best decoding results (WER) are listed below, we got this results by averaging models from epoch 15 to 34, and using attention-decoder decoder with num_paths equals to 100.

test-clean test-other
WER 2.57% 5.94%

To get more unique paths, we scaled the lattice.scores with 0.5 (see https://github.com/k2-fsa/icefall/pull/10#discussion_r690951662 for more details), we searched the lm_score_scale and attention_score_scale for best results, the scales that produced the WER above are also listed below.

lm_scale attention_scale
test-clean 1.3 1.2
test-other 1.2 1.1

You can use the following commands to reproduce our results:

git clone https://github.com/k2-fsa/icefall
cd icefall

# It was using ef233486, you may not need to switch to it
# git checkout ef233486

cd egs/librispeech/ASR
./prepare.sh

export CUDA_VISIBLE_DEVICES="0,1,2,3"
python conformer_ctc/train.py --bucketing-sampler True \
                              --concatenate-cuts False \
                              --max-duration 200 \
                              --full-libri True \
                              --world-size 4 \
                              --lang-dir data/lang_bpe_5000

python conformer_ctc/decode.py --nbest-scale 0.5 \
                               --epoch 34 \
                               --avg 20 \
                               --method attention-decoder \
                               --max-duration 20 \
                               --num-paths 100 \
                               --lang-dir data/lang_bpe_5000

LibriSpeech training results (Tdnn-Lstm)

2021-08-24

(Wei Kang): Result of phone based Tdnn-Lstm model.

Icefall version: caa0b9e942

Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc

The best decoding results (WER) are listed below, we got this results by averaging models from epoch 19 to 14, and using whole-lattice-rescoring decoding method.

test-clean test-other
WER 6.59% 17.69%

We searched the lm_score_scale for best results, the scales that produced the WER above are also listed below.

lm_scale
test-clean 0.8
test-other 0.9