* Fix torch.nn.Embedding error for torch below 1.8.0 * Changes to fbank computation, use lilcom chunky writer * Add min in q,k,v of attention * Remove learnable offset, use relu instead. * Experiments based on SpecAugment change * Merge specaug change from Mingshuang. * Use much more aggressive SpecAug setup * Fix to num_feature_masks bug I introduced; reduce max_frames_mask_fraction 0.4->0.3 * Change p=0.5->0.9, mask_fraction 0.3->0.2 * Change p=0.9 to p=0.8 in SpecAug * Fix num_time_masks code; revert 0.8 to 0.9 * Change max_frames from 0.2 to 0.15 * Remove ReLU in attention * Adding diagnostics code... * Refactor/simplify ConformerEncoder * First version of rand-combine iterated-training-like idea. * Improvements to diagnostics (RE those with 1 dim * Add pelu to this good-performing setup.. * Small bug fixes/imports * Add baseline for the PeLU expt, keeping only the small normalization-related changes. * pelu_base->expscale, add 2xExpScale in subsampling, and in feedforward units. * Double learning rate of exp-scale units * Combine ExpScale and swish for memory reduction * Add import * Fix backprop bug * Fix bug in diagnostics * Increase scale on Scale from 4 to 20 * Increase scale from 20 to 50. * Fix duplicate Swish; replace norm+swish with swish+exp-scale in convolution module * Reduce scale from 50 to 20 * Add deriv-balancing code * Double the threshold in brelu; slightly increase max_factor. * Fix exp dir * Convert swish nonlinearities to ReLU * Replace relu with swish-squared. * Restore ConvolutionModule to state before changes; change all Swish,Swish(Swish) to SwishOffset. * Replace norm on input layer with scale of 0.1. * Extensions to diagnostics code * Update diagnostics * Add BasicNorm module * Replace most normalizations with scales (still have norm in conv) * Change exp dir * Replace norm in ConvolutionModule with a scaling factor. * use nonzero threshold in DerivBalancer * Add min-abs-value 0.2 * Fix dirname * Change min-abs threshold from 0.2 to 0.5 * Scale up pos_bias_u and pos_bias_v before use. * Reduce max_factor to 0.01 * Fix q*scaling logic * Change max_factor in DerivBalancer from 0.025 to 0.01; fix scaling code. * init 1st conv module to smaller variance * Change how scales are applied; fix residual bug * Reduce min_abs from 0.5 to 0.2 * Introduce in_scale=0.5 for SwishExpScale * Fix scale from 0.5 to 2.0 as I really intended.. * Set scaling on SwishExpScale * Add identity pre_norm_final for diagnostics. * Add learnable post-scale for mha * Fix self.post-scale-mha * Another rework, use scales on linear/conv * Change dir name * Reduce initial scaling of modules * Bug-fix RE bias * Cosmetic change * Reduce initial_scale. * Replace ExpScaleRelu with DoubleSwish() * DoubleSwish fix * Use learnable scales for joiner and decoder * Add max-abs-value constraint in DerivBalancer * Add max-abs-value * Change dir name * Remove ExpScale in feedforward layes. * Reduce max-abs limit from 1000 to 100; introduce 2 DerivBalancer modules in conv layer. * Make DoubleSwish more memory efficient * Reduce constraints from deriv-balancer in ConvModule. * Add warmup mode * Remove max-positive constraint in deriv-balancing; add second DerivBalancer in conv module. * Add some extra info to diagnostics * Add deriv-balancer at output of embedding. * Add more stats. * Make epsilon in BasicNorm learnable, optionally. * Draft of 0mean changes.. * Rework of initialization * Fix typo * Remove dead code * Modifying initialization from normal->uniform; add initial_scale when initializing * bug fix re sqrt * Remove xscale from pos_embedding * Remove some dead code. * Cosmetic changes/renaming things * Start adding some files.. * Add more files.. * update decode.py file type * Add remaining files in pruned_transducer_stateless2 * Fix diagnostics-getting code * Scale down pruned loss in warmup mode * Reduce warmup scale on pruned loss form 0.1 to 0.01. * Remove scale_speed, make swish deriv more efficient. * Cosmetic changes to swish * Double warm_step * Fix bug with import * Change initial std from 0.05 to 0.025. * Set also scale for embedding to 0.025. * Remove logging code that broke with newer Lhotse; fix bug with pruned_loss * Add norm+balancer to VggSubsampling * Incorporate changes from master into pruned_transducer_stateless2. * Add max-abs=6, debugged version * Change 0.025,0.05 to 0.01 in initializations * Fix balancer code * Whitespace fix * Reduce initial pruned_loss scale from 0.01 to 0.0 * Increase warm_step (and valid_interval) * Change max-abs from 6 to 10 * Change how warmup works. * Add changes from master to decode.py, train.py * Simplify the warmup code; max_abs 10->6 * Make warmup work by scaling layer contributions; leave residual layer-drop * Fix bug * Fix test mode with random layer dropout * Add random-number-setting function in dataloader * Fix/patch how fix_random_seed() is imported. * Reduce layer-drop prob * Reduce layer-drop prob after warmup to 1 in 100 * Change power of lr-schedule from -0.5 to -0.333 * Increase model_warm_step to 4k * Change max-keep-prob to 0.95 * Refactoring and simplifying conformer and frontend * Rework conformer, remove some code. * Reduce 1st conv channels from 64 to 32 * Add another convolutional layer * Fix padding bug * Remove dropout in output layer * Reduce speed of some components * Initial refactoring to remove unnecessary vocab_size * Fix RE identity * Bug-fix * Add final dropout to conformer * Remove some un-used code * Replace nn.Linear with ScaledLinear in simple joiner * Make 2 projections.. * Reduce initial_speed * Use initial_speed=0.5 * Reduce initial_speed further from 0.5 to 0.25 * Reduce initial_speed from 0.5 to 0.25 * Change how warmup is applied. * Bug fix to warmup_scale * Fix test-mode * Remove final dropout * Make layer dropout rate 0.075, was 0.1. * First draft of model rework * Various bug fixes * Change learning speed of simple_lm_proj * Revert transducer_stateless/ to state in upstream/master * Fix to joiner to allow different dims * Some cleanups * Make training more efficient, avoid redoing some projections. * Change how warm-step is set * First draft of new approach to learning rates + init * Some fixes.. * Change initialization to 0.25 * Fix type of parameter * Fix weight decay formula by adding 1/1-beta * Fix weight decay formula by adding 1/1-beta * Fix checkpoint-writing * Fix to reading scheudler from optim * Simplified optimizer, rework somet things.. * Reduce model_warm_step from 4k to 3k * Fix bug in lambda * Bug-fix RE sign of target_rms * Changing initial_speed from 0.25 to 01 * Change some defaults in LR-setting rule. * Remove initial_speed * Set new scheduler * Change exponential part of lrate to be epoch based * Fix bug * Set 2n rule.. * Implement 2o schedule * Make lrate rule more symmetric * Implement 2p version of learning rate schedule. * Refactor how learning rate is set. * Fix import * Modify init (#301) * update icefall/__init__.py to import more common functions. * update icefall/__init__.py * make imports style consistent. * exclude black check for icefall/__init__.py in pyproject.toml. * Minor fixes for logging (#296) * Minor fixes for logging * Minor fix * Fix dir names * Modify beam search to be efficient with current joienr * Fix adding learning rate to tensorboard * Fix docs in optim.py * Support mix precision training on the reworked model (#305) * Add mix precision support * Minor fixes * Minor fixes * Minor fixes * Tedlium3 pruned transducer stateless (#261) * update tedlium3-pruned-transducer-stateless-codes * update README.md * update README.md * add fast beam search for decoding * do a change for RESULTS.md * do a change for RESULTS.md * do a fix * do some changes for pruned RNN-T * Add mix precision support * Minor fixes * Minor fixes * Updating RESULTS.md; fix in beam_search.py * Fix rebase * Code style check for librispeech pruned transducer stateless2 (#308) * Update results for tedlium3 pruned RNN-T (#307) * Update README.md * Fix CI errors. (#310) * Add more results * Fix tensorboard log location * Add one more epoch of full expt * fix comments * Add results for mixed precision with max-duration 300 * Changes for pretrained.py (tedlium3 pruned RNN-T) (#311) * GigaSpeech recipe (#120) * initial commit * support download, data prep, and fbank * on-the-fly feature extraction by default * support BPE based lang * support HLG for BPE * small fix * small fix * chunked feature extraction by default * Compute features for GigaSpeech by splitting the manifest. * Fixes after review. * Split manifests into 2000 pieces. * set audio duration mismatch tolerance to 0.01 * small fix * add conformer training recipe * Add conformer.py without pre-commit checking * lazy loading and use SingleCutSampler * DynamicBucketingSampler * use KaldifeatFbank to compute fbank for musan * use pretrained language model and lexicon * use 3gram to decode, 4gram to rescore * Add decode.py * Update .flake8 * Delete compute_fbank_gigaspeech.py * Use BucketingSampler for valid and test dataloader * Update params in train.py * Use bpe_500 * update params in decode.py * Decrease num_paths while CUDA OOM * Added README * Update RESULTS * black * Decrease num_paths while CUDA OOM * Decode with post-processing * Update results * Remove lazy_load option * Use default `storage_type` * Keep the original tolerance * Use split-lazy * black * Update pretrained model Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com> * Add LG decoding (#277) * Add LG decoding * Add log weight pushing * Minor fixes * Support computing RNN-T loss with torchaudio (#316) * Support modified beam search decoding for streaming inference with Emformer model. * Formatted imports. * Update results for torchaudio RNN-T. (#322) * Fixed streaming decoding codes for emformer model. * Fixed docs. * Sorted imports for transducer_emformer/streaming_feature_extractor.py * Minor fix for transducer_emformer/streaming_feature_extractor.py Co-authored-by: pkufool <wkang@pku.org.cn> Co-authored-by: Daniel Povey <dpovey@gmail.com> Co-authored-by: Mingshuang Luo <37799481+luomingshuang@users.noreply.github.com> Co-authored-by: Fangjun Kuang <csukuangfj@gmail.com> Co-authored-by: Guo Liyong <guonwpu@qq.com> Co-authored-by: Wang, Guanbo <wgb14@outlook.com>
24 KiB
Results
LibriSpeech BPE training results (Pruned Transducer 2)
pruned_transducer_stateless2 This is with a reworked version of the conformer encoder, with many changes.
Training on fulll librispeech
Using commit 34aad74a2c849542dd5f6359c9e6b527e8782fd6
.
See https://github.com/k2-fsa/icefall/pull/288
The WERs are:
test-clean | test-other | comment | |
---|---|---|---|
greedy search (max sym per frame 1) | 2.62 | 6.37 | --epoch 25 --avg 8 --max-duration 600 |
fast beam search | 2.61 | 6.17 | --epoch 25 --avg 8 --max-duration 600 --decoding-method fast_beam_search |
modified beam search | 2.59 | 6.19 | --epoch 25 --avg 8 --max-duration 600 --decoding-method modified_beam_search |
greedy search (max sym per frame 1) | 2.70 | 6.04 | --epoch 34 --avg 10 --max-duration 600 |
fast beam search | 2.66 | 6.00 | --epoch 34 --avg 10 --max-duration 600 --decoding-method fast_beam_search |
greedy search (max sym per frame 1) | 2.62 | 6.03 | --epoch 38 --avg 10 --max-duration 600 |
fast beam search | 2.57 | 5.95 | --epoch 38 --avg 10 --max-duration 600 --decoding-method fast_beam_search |
The train and decode commands are:
python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp --world-size 8 --num-epochs 26 --full-libri 1 --max-duration 300
and:
python3 ./pruned_transducer_stateless2/decode.py --exp-dir pruned_transducer_stateless2/exp --epoch 25 --avg 8 --bpe-model ./data/lang_bpe_500/bpe.model --max-duration 600
The Tensorboard log is at https://tensorboard.dev/experiment/Xoz0oABMTWewo1slNFXkyA (apologies, log starts only from epoch 3).
Training on train-clean-100:
Trained with 1 job:
python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp_100h_ws1 --world-size 1 --num-epochs 40 --full-libri 0 --max-duration 300
and decoded with:
python3 ./pruned_transducer_stateless2/decode.py --exp-dir pruned_transducer_stateless2/exp_100h_ws1 --epoch 19 --avg 8 --bpe-model ./data/lang_bpe_500/bpe.model --max-duration 600
.
The Tensorboard log is at https://tensorboard.dev/experiment/AhnhooUBRPqTnaggoqo7lg (learning rate schedule is not visible due to a since-fixed bug).
test-clean | test-other | comment | |
---|---|---|---|
greedy search (max sym per frame 1) | 7.12 | 18.42 | --epoch 19 --avg 8 |
greedy search (max sym per frame 1) | 6.71 | 17.77 | --epoch 29 --avg 8 |
greedy search (max sym per frame 1) | 6.64 | 17.19 | --epoch 39 --avg 10 |
fast beam search | 6.58 | 17.27 | --epoch 29 --avg 8 --decoding-method fast_beam_search |
fast beam search | 6.53 | 16.82 | --epoch 39 --avg 10 --decoding-method fast_beam_search |
Trained with 2 jobs:
python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp_100h_ws2 --world-size 2 --num-epochs 40 --full-libri 0 --max-duration 300
and decoded with:
python3 ./pruned_transducer_stateless2/decode.py --exp-dir pruned_transducer_stateless2/exp_100h_ws2 --epoch 19 --avg 8 --bpe-model ./data/lang_bpe_500/bpe.model --max-duration 600
.
The Tensorboard log is at https://tensorboard.dev/experiment/dvOC9wsrSdWrAIdsebJILg/ (learning rate schedule is not visible due to a since-fixed bug).
test-clean | test-other | comment | |
---|---|---|---|
greedy search (max sym per frame 1) | 7.05 | 18.77 | --epoch 19 --avg 8 |
greedy search (max sym per frame 1) | 6.82 | 18.14 | --epoch 29 --avg 8 |
greedy search (max sym per frame 1) | 6.81 | 17.66 | --epoch 30 --avg 10 |
Trained with 4 jobs:
python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp_100h_ws4 --world-size 4 --num-epochs 40 --full-libri 0 --max-duration 300
and decoded with:
python3 ./pruned_transducer_stateless2/decode.py --exp-dir pruned_transducer_stateless2/exp_100h_ws4 --epoch 19 --avg 8 --bpe-model ./data/lang_bpe_500/bpe.model --max-duration 600
.
The Tensorboard log is at https://tensorboard.dev/experiment/a3T0TyC0R5aLj5bmFbRErA/ (learning rate schedule is not visible due to a since-fixed bug).
test-clean | test-other | comment | |
---|---|---|---|
greedy search (max sym per frame 1) | 7.31 | 19.55 | --epoch 19 --avg 8 |
greedy search (max sym per frame 1) | 7.08 | 18.59 | --epoch 29 --avg 8 |
greedy search (max sym per frame 1) | 6.86 | 18.29 | --epoch 30 --avg 10 |
Trained with 1 job, with --use-fp16=True --max-duration=300 i.e. with half-precision
floats (but without increasing max-duration), after merging https://github.com/k2-fsa/icefall/pull/305.
Train command was
python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp_100h_fp16 --world-size 1 --num-epochs 40 --full-libri 0 --max-duration 300 --use-fp16 True
The Tensorboard log is at https://tensorboard.dev/experiment/DAtGG9lpQJCROUDwPNxwpA
test-clean | test-other | comment | |
---|---|---|---|
greedy search (max sym per frame 1) | 7.10 | 18.57 | --epoch 19 --avg 8 |
greedy search (max sym per frame 1) | 6.81 | 17.84 | --epoch 29 --avg 8 |
greedy search (max sym per frame 1) | 6.63 | 17.39 | --epoch 30 --avg 10 |
Trained with 1 job, with --use-fp16=True --max-duration=500, i.e. with half-precision
floats and max-duration increased from 300 to 500, after merging https://github.com/k2-fsa/icefall/pull/305.
Train command was
python3 ./pruned_transducer_stateless2/train.py --exp-dir=pruned_transducer_stateless2/exp_100h_fp16 --world-size 1 --num-epochs 40 --full-libri 0 --max-duration 500 --use-fp16 True
The Tensorboard log is at https://tensorboard.dev/experiment/Km7QBHYnSLWs4qQnAJWsaA
test-clean | test-other | comment | |
---|---|---|---|
greedy search (max sym per frame 1) | 7.10 | 18.79 | --epoch 19 --avg 8 |
greedy search (max sym per frame 1) | 6.92 | 18.16 | --epoch 29 --avg 8 |
greedy search (max sym per frame 1) | 6.89 | 17.75 | --epoch 30 --avg 10 |
LibriSpeech BPE training results (Pruned Transducer)
Conformer encoder + non-current decoder. The decoder contains only an embedding layer, a Conv1d (with kernel size 2) and a linear layer (to transform tensor dim).
2022-03-12
Using commit 1603744469d167d848e074f2ea98c587153205fa
.
See https://github.com/k2-fsa/icefall/pull/248
The WERs are:
test-clean | test-other | comment | |
---|---|---|---|
greedy search (max sym per frame 1) | 2.62 | 6.37 | --epoch 42 --avg 11 --max-duration 100 |
greedy search (max sym per frame 2) | 2.62 | 6.37 | --epoch 42 --avg 11 --max-duration 100 |
greedy search (max sym per frame 3) | 2.62 | 6.37 | --epoch 42 --avg 11 --max-duration 100 |
modified beam search (beam size 4) | 2.56 | 6.27 | --epoch 42 --avg 11 --max-duration 100 |
beam search (beam size 4) | 2.57 | 6.27 | --epoch 42 --avg 11 --max-duration 100 |
The decoding time for test-clean
and test-other
is given below:
(A V100 GPU with 32 GB RAM is used for decoding. Note: Not all GPU RAM is used during decoding.)
decoding method | test-clean (seconds) | test-other (seconds) |
---|---|---|
greedy search (--max-sym-per-frame=1) | 160 | 159 |
greedy search (--max-sym-per-frame=2) | 184 | 177 |
greedy search (--max-sym-per-frame=3) | 210 | 213 |
modified beam search (--beam-size 4) | 273 | 269 |
beam search (--beam-size 4) | 2741 | 2221 |
We recommend you to use modified_beam_search
.
Training command:
cd egs/librispeech/ASR/
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
. path.sh
./pruned_transducer_stateless/train.py \
--world-size 8 \
--num-epochs 60 \
--start-epoch 0 \
--exp-dir pruned_transducer_stateless/exp \
--full-libri 1 \
--max-duration 300 \
--prune-range 5 \
--lr-factor 5 \
--lm-scale 0.25
The tensorboard training log can be found at https://tensorboard.dev/experiment/WKRFY5fYSzaVBHahenpNlA/
The command for decoding is:
epoch=42
avg=11
sym=1
# greedy search
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless/exp \
--max-duration 100 \
--decoding-method greedy_search \
--beam-size 4 \
--max-sym-per-frame $sym
# modified beam search
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless/exp \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
# beam search
# (not recommended)
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless/exp \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
You can find a pre-trained model, decoding logs, and decoding results at https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless-2022-03-12
2022-02-18
The WERs are
test-clean | test-other | comment | |
---|---|---|---|
greedy search | 2.85 | 6.98 | --epoch 28 --avg 15 --max-duration 100 |
The training command for reproducing is given below:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./pruned_transducer_stateless/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 0 \
--exp-dir pruned_transducer_stateless/exp \
--full-libri 1 \
--max-duration 300 \
--prune-range 5 \
--lr-factor 5 \
--lm-scale 0.25 \
The tensorboard training log can be found at https://tensorboard.dev/experiment/ejG7VpakRYePNNj6AbDEUw/#scalars
The decoding command is:
epoch=28
avg=15
## greedy search
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir pruned_transducer_stateless/exp \
--max-duration 100
LibriSpeech BPE training results (Transducer)
Conformer encoder + embedding decoder
Conformer encoder + non-recurrent decoder. The decoder contains only an embedding layer and a Conv1d (with kernel size 2).
See
2022-03-01
Using commit 2332ba312d7ce72f08c7bac1e3312f7e3dd722dc
.
It uses GigaSpeech as extra training data. 20% of the time it selects a batch from L subset of GigaSpeech and 80% of the time it selects a batch from LibriSpeech.
The WERs are
test-clean | test-other | comment | |
---|---|---|---|
greedy search (max sym per frame 1) | 2.64 | 6.55 | --epoch 39 --avg 15 --max-duration 100 |
modified beam search (beam size 4) | 2.61 | 6.46 | --epoch 39 --avg 15 --max-duration 100 |
The training command for reproducing is given below:
cd egs/librispeech/ASR/
./prepare.sh
./prepare_giga_speech.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./transducer_stateless_multi_datasets/train.py \
--world-size 4 \
--num-epochs 40 \
--start-epoch 0 \
--exp-dir transducer_stateless_multi_datasets/exp-full-2 \
--full-libri 1 \
--max-duration 300 \
--lr-factor 5 \
--bpe-model data/lang_bpe_500/bpe.model \
--modified-transducer-prob 0.25 \
--giga-prob 0.2
The tensorboard training log can be found at https://tensorboard.dev/experiment/xmo5oCgrRVelH9dCeOkYBg/
The decoding command is:
epoch=39
avg=15
sym=1
# greedy search
./transducer_stateless_multi_datasets/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless_multi_datasets/exp-full-2 \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--context-size 2 \
--max-sym-per-frame $sym
# modified beam search
./transducer_stateless_multi_datasets/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless_multi_datasets/exp-full-2 \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--context-size 2 \
--decoding-method modified_beam_search \
--beam-size 4
You can find a pretrained model by visiting https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-multi-datasets-bpe-500-2022-03-01
2022-04-19
This version uses torchaudio's RNN-T loss.
Using commit fce7f3cd9a486405ee008bcbe4999264f27774a3
.
See https://github.com/k2-fsa/icefall/pull/316
test-clean | test-other | comment | |
---|---|---|---|
greedy search (max sym per frame 1) | 2.65 | 6.30 | --epoch 59 --avg 10 --max-duration 600 |
greedy search (max sym per frame 2) | 2.62 | 6.23 | --epoch 59 --avg 10 --max-duration 100 |
greedy search (max sym per frame 3) | 2.62 | 6.23 | --epoch 59 --avg 10 --max-duration 100 |
modified beam search | 2.63 | 6.15 | --epoch 59 --avg 10 --max-duration 100 --decoding-method modified_beam_search |
beam search | 2.59 | 6.15 | --epoch 59 --avg 10 --max-duration 100 --decoding-method beam_search |
Note: This model is trained with standard RNN-T loss. Neither modified transducer nor pruned RNN-T is used. You can see that there is a performance degradation in WER when we limit the max symbol per frame to 1.
The number of active paths in modified_beam_search
and beam_search
is 4.
The training and decoding commands are:
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./transducer_stateless2/train.py \
--world-size 8 \
--num-epochs 60 \
--start-epoch 0 \
--exp-dir transducer_stateless2/exp-2 \
--full-libri 1 \
--max-duration 300 \
--lr-factor 5
epoch=59
avg=10
# greedy search
./transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./transducer_stateless2/exp-2 \
--max-duration 600 \
--decoding-method greedy_search \
--max-sym-per-frame 1
# modified beam search
./transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./transducer_stateless2/exp-2 \
--max-duration 100 \
--decoding-method modified_beam_search \
# beam search
./transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./transducer_stateless2/exp-2 \
--max-duration 100 \
--decoding-method beam_search \
The tensorboard log is at https://tensorboard.dev/experiment/oAlle3dxQD2EY8ePwjIGuw/.
You can find a pre-trained model, decoding logs, and decoding results at https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless2-torchaudio-2022-04-19
2022-02-07
Using commit a8150021e01d34ecbd6198fe03a57eacf47a16f2
.
The WERs are
test-clean | test-other | comment | |
---|---|---|---|
greedy search (max sym per frame 1) | 2.67 | 6.67 | --epoch 63 --avg 19 --max-duration 100 |
greedy search (max sym per frame 2) | 2.67 | 6.67 | --epoch 63 --avg 19 --max-duration 100 |
greedy search (max sym per frame 3) | 2.67 | 6.67 | --epoch 63 --avg 19 --max-duration 100 |
modified beam search (beam size 4) | 2.67 | 6.57 | --epoch 63 --avg 19 --max-duration 100 |
The training command for reproducing is given below:
cd egs/librispeech/ASR/
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./transducer_stateless/train.py \
--world-size 4 \
--num-epochs 76 \
--start-epoch 0 \
--exp-dir transducer_stateless/exp-full \
--full-libri 1 \
--max-duration 300 \
--lr-factor 5 \
--bpe-model data/lang_bpe_500/bpe.model \
--modified-transducer-prob 0.25
The tensorboard training log can be found at https://tensorboard.dev/experiment/qgvWkbF2R46FYA6ZMNmOjA/#scalars
The decoding command is:
epoch=63
avg=19
## greedy search
for sym in 1 2 3; do
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp-full \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--max-sym-per-frame $sym
done
## modified beam search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp-full \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--context-size 2 \
--decoding-method modified_beam_search \
--beam-size 4
You can find a pretrained model by visiting https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-stateless-bpe-500-2022-02-07
Conformer encoder + LSTM decoder
Using commit 8187d6236c2926500da5ee854f758e621df803cc
.
Conformer encoder + LSTM decoder.
The best WER is
test-clean | test-other | |
---|---|---|
WER | 3.07 | 7.51 |
using --epoch 34 --avg 11
with greedy search.
The training command to reproduce the above WER is:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./transducer/train.py \
--world-size 4 \
--num-epochs 35 \
--start-epoch 0 \
--exp-dir transducer/exp-lr-2.5-full \
--full-libri 1 \
--max-duration 180 \
--lr-factor 2.5
The decoding command is:
epoch=34
avg=11
./transducer/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer/exp-lr-2.5-full \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100
You can find the tensorboard log at: https://tensorboard.dev/experiment/D7NQc3xqTpyVmWi5FnWjrA
LibriSpeech BPE training results (Conformer-CTC)
2021-11-09
The best WER, as of 2021-11-09, for the librispeech test dataset is below (using HLG decoding + n-gram LM rescoring + attention decoder rescoring):
test-clean | test-other | |
---|---|---|
WER | 2.42 | 5.73 |
Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are:
ngram_lm_scale | attention_scale |
---|---|
2.0 | 2.0 |
To reproduce the above result, use the following commands for training:
cd egs/librispeech/ASR/conformer_ctc
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./conformer_ctc/train.py \
--exp-dir conformer_ctc/exp_500_att0.8 \
--lang-dir data/lang_bpe_500 \
--att-rate 0.8 \
--full-libri 1 \
--max-duration 200 \
--concatenate-cuts 0 \
--world-size 4 \
--bucketing-sampler 1 \
--start-epoch 0 \
--num-epochs 90
# Note: It trains for 90 epochs, but the best WER is at epoch-77.pt
and the following command for decoding
./conformer_ctc/decode.py \
--exp-dir conformer_ctc/exp_500_att0.8 \
--lang-dir data/lang_bpe_500 \
--max-duration 30 \
--concatenate-cuts 0 \
--bucketing-sampler 1 \
--num-paths 1000 \
--epoch 77 \
--avg 55 \
--method attention-decoder \
--nbest-scale 0.5
You can find the pre-trained model by visiting https://huggingface.co/csukuangfj/icefall-asr-librispeech-conformer-ctc-jit-bpe-500-2021-11-09
The tensorboard log for training is available at https://tensorboard.dev/experiment/hZDWrZfaSqOMqtW0NEfXKg/#scalars
2021-08-19
(Wei Kang): Result of https://github.com/k2-fsa/icefall/pull/13
TensorBoard log is available at https://tensorboard.dev/experiment/GnRzq8WWQW62dK4bklXBTg/#scalars
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc
The best decoding results (WER) are listed below, we got this results by averaging models from epoch 15 to 34, and using attention-decoder
decoder with num_paths equals to 100.
test-clean | test-other | |
---|---|---|
WER | 2.57% | 5.94% |
To get more unique paths, we scaled the lattice.scores with 0.5 (see https://github.com/k2-fsa/icefall/pull/10#discussion_r690951662 for more details), we searched the lm_score_scale and attention_score_scale for best results, the scales that produced the WER above are also listed below.
lm_scale | attention_scale | |
---|---|---|
test-clean | 1.3 | 1.2 |
test-other | 1.2 | 1.1 |
You can use the following commands to reproduce our results:
git clone https://github.com/k2-fsa/icefall
cd icefall
# It was using ef233486, you may not need to switch to it
# git checkout ef233486
cd egs/librispeech/ASR
./prepare.sh
export CUDA_VISIBLE_DEVICES="0,1,2,3"
python conformer_ctc/train.py --bucketing-sampler True \
--concatenate-cuts False \
--max-duration 200 \
--full-libri True \
--world-size 4 \
--lang-dir data/lang_bpe_5000
python conformer_ctc/decode.py --nbest-scale 0.5 \
--epoch 34 \
--avg 20 \
--method attention-decoder \
--max-duration 20 \
--num-paths 100 \
--lang-dir data/lang_bpe_5000
LibriSpeech training results (Tdnn-Lstm)
2021-08-24
(Wei Kang): Result of phone based Tdnn-Lstm model.
Icefall version: caa0b9e942
Pretrained model is available at https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc
The best decoding results (WER) are listed below, we got this results by averaging models from epoch 19 to 14, and using whole-lattice-rescoring
decoding method.
test-clean | test-other | |
---|---|---|
WER | 6.59% | 17.69% |
We searched the lm_score_scale for best results, the scales that produced the WER above are also listed below.
lm_scale | |
---|---|
test-clean | 0.8 |
test-other | 0.9 |