2023-08-14 09:51:20 +08:00

113 lines
3.9 KiB
Python

from typing import Dict
import ast
from lhotse import load_manifest, load_manifest_lazy
from lhotse.cut import Cut, CutSet
from text_normalization import remove_non_alphabetic
from tqdm import tqdm
import os
def get_facebook_biasing_list(
test_set: str,
use_distractors: bool = False,
num_distractors: int = 100,
) -> Dict:
assert num_distractors in (100,500,1000,2000), num_distractors
if test_set == "test-clean":
biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-clean.biasing_{num_distractors}.tsv"
elif test_set == "test-other":
biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-other.biasing_{num_distractors}.tsv"
else:
raise ValueError(f"Unseen test set {test_set}")
f = open(biasing_file, 'r')
data = f.readlines()
f.close()
output = dict()
for line in data:
id, _, l1, l2 = line.split('\t')
if use_distractors:
biasing_list = ast.literal_eval(l2)
else:
biasing_list = ast.literal_eval(l1)
biasing_list = [w.strip().upper() for w in biasing_list]
output[id] = " ".join(biasing_list)
return output
def get_rare_words():
txt_path = f"data/lang_bpe_500/transcript_words_{subset}.txt"
rare_word_file = f"data/context_biasing/{subset}_rare_words_{min_count}.txt"
if os.path.exists(rare_word_file):
print("File exists, do not proceed!")
return
with open(txt_path, "r") as file:
words = file.read().upper().split()
word_count = {}
for word in words:
word = remove_non_alphabetic(word, strict=False)
if word not in word_count:
word_count[word] = 1
else:
word_count[word] += 1
print(f"A total of {len(word_count)} words appeared!")
rare_words = []
for k in word_count:
if word_count[k] <= min_count:
rare_words.append(k+"\n")
print(f"A total of {len(rare_words)} appeared <= 10 times")
with open(rare_word_file, 'w') as f:
f.writelines(rare_words)
def add_context_list_to_manifest(subset: str, min_count: int):
rare_words_file = f"data/context_biasing/{subset}_rare_words_{min_count}.txt"
manifest_dir = f"data/fbank/librilight_cuts_train_{subset}.jsonl.gz"
target_manifest_dir = manifest_dir.replace(".jsonl.gz", f"_with_context_list_min_count_{min_count}.jsonl.gz")
if os.path.exists(target_manifest_dir):
print(f"Target file exits at {target_manifest_dir}!")
return
print(f"Reading rare words from {rare_words_file}")
with open(rare_words_file, "r") as f:
rare_words = f.read()
rare_words = rare_words.split("\n")
rare_words = set(rare_words)
print(f"A total of {len(rare_words)} rare words!")
cuts = load_manifest_lazy(manifest_dir)
print(f"Loaded manifest from {manifest_dir}")
def _add_context(c: Cut):
splits = remove_non_alphabetic(c.supervisions[0].text).upper().split()
found = []
for w in splits:
if w in rare_words:
found.append(w)
c.supervisions[0].context_list = " ".join(found)
return c
cuts = cuts.map(_add_context)
cuts.to_file(target_manifest_dir)
print(f"Saved manifest with context list to {target_manifest_dir}")
def check(subset: str, min_count: int):
manifest_dir = f"data/fbank/librilight_cuts_train_{subset}_with_context_list_min_count_{min_count}.jsonl.gz"
cuts = load_manifest_lazy(manifest_dir)
total_cuts = len(cuts)
has_context_list = [c.supervisions[0].context_list != "" for c in cuts]
print(f"{sum(has_context_list)}/{total_cuts} cuts have context list! ")
if __name__=="__main__":
#test_set = "test-clean"
#get_facebook_biasing_list(test_set)
#get_rare_words()
subset = "small"
add_context_list_to_manifest(subset=subset)