from typing import Dict import ast from lhotse import load_manifest, load_manifest_lazy from lhotse.cut import Cut, CutSet from text_normalization import remove_non_alphabetic from tqdm import tqdm import os def get_facebook_biasing_list( test_set: str, use_distractors: bool = False, num_distractors: int = 100, ) -> Dict: assert num_distractors in (100,500,1000,2000), num_distractors if test_set == "test-clean": biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-clean.biasing_{num_distractors}.tsv" elif test_set == "test-other": biasing_file = f"data/context_biasing/fbai-speech/is21_deep_bias/ref/test-other.biasing_{num_distractors}.tsv" else: raise ValueError(f"Unseen test set {test_set}") f = open(biasing_file, 'r') data = f.readlines() f.close() output = dict() for line in data: id, _, l1, l2 = line.split('\t') if use_distractors: biasing_list = ast.literal_eval(l2) else: biasing_list = ast.literal_eval(l1) biasing_list = [w.strip().upper() for w in biasing_list] output[id] = " ".join(biasing_list) return output def get_rare_words(): txt_path = f"data/lang_bpe_500/transcript_words_{subset}.txt" rare_word_file = f"data/context_biasing/{subset}_rare_words_{min_count}.txt" if os.path.exists(rare_word_file): print("File exists, do not proceed!") return with open(txt_path, "r") as file: words = file.read().upper().split() word_count = {} for word in words: word = remove_non_alphabetic(word, strict=False) if word not in word_count: word_count[word] = 1 else: word_count[word] += 1 print(f"A total of {len(word_count)} words appeared!") rare_words = [] for k in word_count: if word_count[k] <= min_count: rare_words.append(k+"\n") print(f"A total of {len(rare_words)} appeared <= 10 times") with open(rare_word_file, 'w') as f: f.writelines(rare_words) def add_context_list_to_manifest(subset: str, min_count: int): rare_words_file = f"data/context_biasing/{subset}_rare_words_{min_count}.txt" manifest_dir = f"data/fbank/librilight_cuts_train_{subset}.jsonl.gz" target_manifest_dir = manifest_dir.replace(".jsonl.gz", f"_with_context_list_min_count_{min_count}.jsonl.gz") if os.path.exists(target_manifest_dir): print(f"Target file exits at {target_manifest_dir}!") return print(f"Reading rare words from {rare_words_file}") with open(rare_words_file, "r") as f: rare_words = f.read() rare_words = rare_words.split("\n") rare_words = set(rare_words) print(f"A total of {len(rare_words)} rare words!") cuts = load_manifest_lazy(manifest_dir) print(f"Loaded manifest from {manifest_dir}") def _add_context(c: Cut): splits = remove_non_alphabetic(c.supervisions[0].text).upper().split() found = [] for w in splits: if w in rare_words: found.append(w) c.supervisions[0].context_list = " ".join(found) return c cuts = cuts.map(_add_context) cuts.to_file(target_manifest_dir) print(f"Saved manifest with context list to {target_manifest_dir}") def check(subset: str, min_count: int): manifest_dir = f"data/fbank/librilight_cuts_train_{subset}_with_context_list_min_count_{min_count}.jsonl.gz" cuts = load_manifest_lazy(manifest_dir) total_cuts = len(cuts) has_context_list = [c.supervisions[0].context_list != "" for c in cuts] print(f"{sum(has_context_list)}/{total_cuts} cuts have context list! ") if __name__=="__main__": #test_set = "test-clean" #get_facebook_biasing_list(test_set) #get_rare_words() subset = "small" add_context_list_to_manifest(subset=subset)