mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
1004 lines
32 KiB
Python
Executable File
1004 lines
32 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright 2023-2024 Xiaomi Corp. (authors: Zengwei Yao,
|
|
# Wei Kang)
|
|
#
|
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
from shutil import copyfile
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
import itertools
|
|
import json
|
|
import copy
|
|
import math
|
|
import os
|
|
import random
|
|
import time
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import Tensor
|
|
import torch.multiprocessing as mp
|
|
import torch.nn as nn
|
|
from lhotse.cut import Cut
|
|
from lhotse.utils import fix_random_seed
|
|
from torch.cuda.amp import GradScaler, autocast
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.optim import Optimizer
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from tts_datamodule import LJSpeechTtsDataModule
|
|
|
|
from torch.optim.lr_scheduler import ExponentialLR, LRScheduler
|
|
from torch.optim import Optimizer
|
|
|
|
from utils import (
|
|
load_checkpoint,
|
|
save_checkpoint,
|
|
plot_spectrogram,
|
|
get_cosine_schedule_with_warmup,
|
|
)
|
|
|
|
from icefall import diagnostics
|
|
from icefall.dist import cleanup_dist, setup_dist
|
|
from icefall.env import get_env_info
|
|
from icefall.hooks import register_inf_check_hooks
|
|
from icefall.utils import (
|
|
AttributeDict,
|
|
MetricsTracker,
|
|
setup_logger,
|
|
str2bool,
|
|
get_parameter_groups_with_lrs,
|
|
)
|
|
from models import Vocos
|
|
from lhotse import Fbank, FbankConfig
|
|
|
|
|
|
def add_model_arguments(parser: argparse.ArgumentParser):
|
|
parser.add_argument(
|
|
"--num-layers",
|
|
type=int,
|
|
default=8,
|
|
help="Number of ConvNeXt layers.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--hidden-dim",
|
|
type=int,
|
|
default=512,
|
|
help="Hidden dim of ConvNeXt module.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--intermediate-dim",
|
|
type=int,
|
|
default=1536,
|
|
help="Intermediate dim of ConvNeXt module.",
|
|
)
|
|
|
|
|
|
def get_parser():
|
|
parser = argparse.ArgumentParser(
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--world-size",
|
|
type=int,
|
|
default=1,
|
|
help="Number of GPUs for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--master-port",
|
|
type=int,
|
|
default=12354,
|
|
help="Master port to use for DDP training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tensorboard",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Should various information be logged in tensorboard.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num-epochs",
|
|
type=int,
|
|
default=100,
|
|
help="Number of epochs to train.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start-epoch",
|
|
type=int,
|
|
default=1,
|
|
help="""Resume training from this epoch. It should be positive.
|
|
If larger than 1, it will load checkpoint from
|
|
exp-dir/epoch-{start_epoch-1}.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--start-batch",
|
|
type=int,
|
|
default=0,
|
|
help="""If positive, --start-epoch is ignored and
|
|
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp-dir",
|
|
type=str,
|
|
default="vocos/exp",
|
|
help="""The experiment dir.
|
|
It specifies the directory where all training related
|
|
files, e.g., checkpoints, log, etc, are saved
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--learning-rate", type=float, default=0.0005, help="The learning rate."
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--seed",
|
|
type=int,
|
|
default=42,
|
|
help="The seed for random generators intended for reproducibility",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--print-diagnostics",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Accumulate stats on activations, print them and exit.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--inf-check",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Add hooks to check for infinite module outputs and gradients.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--save-every-n",
|
|
type=int,
|
|
default=4000,
|
|
help="""Save checkpoint after processing this number of batches"
|
|
periodically. We save checkpoint to exp-dir/ whenever
|
|
params.batch_idx_train % save_every_n == 0. The checkpoint filename
|
|
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
|
|
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
|
|
end of each epoch where `xxx` is the epoch number counting from 1.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--keep-last-k",
|
|
type=int,
|
|
default=30,
|
|
help="""Only keep this number of checkpoints on disk.
|
|
For instance, if it is 3, there are only 3 checkpoints
|
|
in the exp-dir with filenames `checkpoint-xxx.pt`.
|
|
It does not affect checkpoints with name `epoch-xxx.pt`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--average-period",
|
|
type=int,
|
|
default=500,
|
|
help="""Update the averaged model, namely `model_avg`, after processing
|
|
this number of batches. `model_avg` is a separate version of model,
|
|
in which each floating-point parameter is the average of all the
|
|
parameters from the start of training. Each time we take the average,
|
|
we do: `model_avg = model * (average_period / batch_idx_train) +
|
|
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
|
|
""",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use-fp16",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to use half precision training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--mrd-loss-scale",
|
|
type=float,
|
|
default=0.1,
|
|
help="The scale of MultiResolutionDiscriminator loss.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--mel-loss-scale",
|
|
type=float,
|
|
default=45,
|
|
help="The scale of melspectrogram loss.",
|
|
)
|
|
|
|
add_model_arguments(parser)
|
|
|
|
return parser
|
|
|
|
|
|
def get_params() -> AttributeDict:
|
|
"""Return a dict containing training parameters.
|
|
|
|
All training related parameters that are not passed from the commandline
|
|
are saved in the variable `params`.
|
|
|
|
Commandline options are merged into `params` after they are parsed, so
|
|
you can also access them via `params`.
|
|
|
|
Explanation of options saved in `params`:
|
|
|
|
- best_train_loss: Best training loss so far. It is used to select
|
|
the model that has the lowest training loss. It is
|
|
updated during the training.
|
|
|
|
- best_valid_loss: Best validation loss so far. It is used to select
|
|
the model that has the lowest validation loss. It is
|
|
updated during the training.
|
|
|
|
- best_train_epoch: It is the epoch that has the best training loss.
|
|
|
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
|
|
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
|
contains number of batches trained so far across
|
|
epochs.
|
|
|
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
|
|
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
|
|
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
|
|
|
- feature_dim: The model input dim. It has to match the one used
|
|
in computing features.
|
|
"""
|
|
params = AttributeDict(
|
|
{
|
|
"best_train_loss": float("inf"),
|
|
"best_valid_loss": float("inf"),
|
|
"best_train_epoch": -1,
|
|
"best_valid_epoch": -1,
|
|
"batch_idx_train": 0,
|
|
"log_interval": 50,
|
|
"reset_interval": 200,
|
|
"valid_interval": 500,
|
|
"feature_dim": 80,
|
|
"segment_size": 16384,
|
|
"adam_b1": 0.8,
|
|
"adam_b2": 0.9,
|
|
"warmup_steps": 0,
|
|
"max_steps": 2000000,
|
|
"env_info": get_env_info(),
|
|
}
|
|
)
|
|
|
|
return params
|
|
|
|
|
|
def get_model(params: AttributeDict) -> nn.Module:
|
|
device = params.device
|
|
model = Vocos(
|
|
feature_dim=params.feature_dim,
|
|
dim=params.hidden_dim,
|
|
n_fft=params.frame_length,
|
|
hop_length=params.frame_shift,
|
|
intermediate_dim=params.intermediate_dim,
|
|
num_layers=params.num_layers,
|
|
sample_rate=params.sampling_rate,
|
|
).to(device)
|
|
|
|
num_param_head = sum([p.numel() for p in model.head.parameters()])
|
|
logging.info(f"Number of Head parameters : {num_param_head}")
|
|
num_param_bone = sum([p.numel() for p in model.backbone.parameters()])
|
|
logging.info(f"Number of Generator parameters : {num_param_bone}")
|
|
num_param_mpd = sum([p.numel() for p in model.mpd.parameters()])
|
|
logging.info(f"Number of MultiPeriodDiscriminator parameters : {num_param_mpd}")
|
|
num_param_mrd = sum([p.numel() for p in model.mrd.parameters()])
|
|
logging.info(f"Number of MultiResolutionDiscriminator parameters : {num_param_mrd}")
|
|
logging.info(
|
|
f"Number of model parameters : {num_param_head + num_param_bone + num_param_mpd + num_param_mrd}"
|
|
)
|
|
return model
|
|
|
|
|
|
def load_checkpoint_if_available(
|
|
params: AttributeDict,
|
|
model: nn.Module,
|
|
model_avg: nn.Module = None,
|
|
optimizer_g: Optional[Optimizer] = None,
|
|
optimizer_d: Optional[Optimizer] = None,
|
|
scheduler_g: Optional[LRScheduler] = None,
|
|
scheduler_d: Optional[LRScheduler] = None,
|
|
) -> Optional[Dict[str, Any]]:
|
|
"""Load checkpoint from file.
|
|
|
|
If params.start_batch is positive, it will load the checkpoint from
|
|
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
|
|
params.start_epoch is larger than 1, it will load the checkpoint from
|
|
`params.start_epoch - 1`.
|
|
|
|
Apart from loading state dict for `model` and `optimizer` it also updates
|
|
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
|
and `best_valid_loss` in `params`.
|
|
|
|
Args:
|
|
params:
|
|
The return value of :func:`get_params`.
|
|
model:
|
|
The training model.
|
|
model_avg:
|
|
The stored model averaged from the start of training.
|
|
optimizer:
|
|
The optimizer that we are using.
|
|
scheduler:
|
|
The scheduler that we are using.
|
|
Returns:
|
|
Return a dict containing previously saved training info.
|
|
"""
|
|
if params.start_batch > 0:
|
|
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
|
|
elif params.start_epoch > 1:
|
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
|
else:
|
|
return None
|
|
|
|
assert filename.is_file(), f"{filename} does not exist!"
|
|
|
|
saved_params = load_checkpoint(
|
|
filename,
|
|
model=model,
|
|
model_avg=model_avg,
|
|
optimizer_g=optimizer_g,
|
|
optimizer_d=optimizer_d,
|
|
scheduler_g=scheduler_g,
|
|
scheduler_d=scheduler_d,
|
|
)
|
|
|
|
keys = [
|
|
"best_train_epoch",
|
|
"best_valid_epoch",
|
|
"batch_idx_train",
|
|
"best_train_loss",
|
|
"best_valid_loss",
|
|
]
|
|
for k in keys:
|
|
params[k] = saved_params[k]
|
|
|
|
if params.start_batch > 0:
|
|
if "cur_epoch" in saved_params:
|
|
params["start_epoch"] = saved_params["cur_epoch"]
|
|
|
|
return saved_params
|
|
|
|
|
|
def compute_generator_loss(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
features: Tensor,
|
|
audios: Tensor,
|
|
) -> Tuple[Tensor, MetricsTracker]:
|
|
device = params.device
|
|
model = model.module if isinstance(model, DDP) else model
|
|
|
|
audios_hat = model(features) # (B, T)
|
|
|
|
mel_loss = model.melspec_loss(audios_hat, audios)
|
|
|
|
_, gen_score_mpd, fmap_rs_mpd, fmap_gs_mpd = model.mpd(y=audios, y_hat=audios_hat)
|
|
_, gen_score_mrd, fmap_rs_mrd, fmap_gs_mrd = model.mrd(y=audios, y_hat=audios_hat)
|
|
|
|
loss_gen_mpd, list_loss_gen_mpd = model.gen_loss(disc_outputs=gen_score_mpd)
|
|
loss_gen_mrd, list_loss_gen_mrd = model.gen_loss(disc_outputs=gen_score_mrd)
|
|
|
|
loss_gen_mpd = loss_gen_mpd / len(list_loss_gen_mpd)
|
|
loss_gen_mrd = loss_gen_mrd / len(list_loss_gen_mrd)
|
|
|
|
loss_fm_mpd = model.feat_matching_loss(
|
|
fmap_r=fmap_rs_mpd, fmap_g=fmap_gs_mpd
|
|
) / len(fmap_rs_mpd)
|
|
loss_fm_mrd = model.feat_matching_loss(
|
|
fmap_r=fmap_gs_mrd, fmap_g=fmap_gs_mrd
|
|
) / len(fmap_rs_mrd)
|
|
|
|
loss_gen_all = (
|
|
loss_gen_mpd
|
|
+ params.mrd_loss_scale * loss_gen_mrd
|
|
+ loss_fm_mpd
|
|
+ params.mrd_loss_scale * loss_fm_mrd
|
|
+ params.mel_loss_scale * mel_loss
|
|
)
|
|
|
|
assert loss_gen_all.requires_grad == True
|
|
|
|
info = MetricsTracker()
|
|
info["frames"] = 1
|
|
info["loss_gen"] = loss_gen_all.detach().cpu().item()
|
|
info["loss_mel"] = mel_loss.detach().cpu().item()
|
|
info["loss_feature_mpd"] = loss_fm_mpd.detach().cpu().item()
|
|
info["loss_feature_mrd"] = loss_fm_mrd.detach().cpu().item()
|
|
info["loss_gen_mrd"] = loss_gen_mrd.detach().cpu().item()
|
|
info["loss_gen_mpd"] = loss_gen_mpd.detach().cpu().item()
|
|
|
|
return loss_gen_all, info
|
|
|
|
|
|
def compute_discriminator_loss(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
features: Tensor,
|
|
audios: Tensor,
|
|
) -> Tuple[Tensor, MetricsTracker]:
|
|
device = params.device
|
|
model = model.module if isinstance(model, DDP) else model
|
|
|
|
with torch.no_grad():
|
|
audios_hat = model(features) # (B, 1, T)
|
|
|
|
real_score_mpd, gen_score_mpd, _, _ = model.mpd(y=audios, y_hat=audios_hat)
|
|
real_score_mrd, gen_score_mrd, _, _ = model.mrd(y=audios, y_hat=audios_hat)
|
|
loss_mpd, loss_mpd_real, loss_mpd_gen = model.disc_loss(
|
|
disc_real_outputs=real_score_mpd, disc_generated_outputs=gen_score_mpd
|
|
)
|
|
loss_mrd, loss_mrd_real, loss_mrd_gen = model.disc_loss(
|
|
disc_real_outputs=real_score_mrd, disc_generated_outputs=gen_score_mrd
|
|
)
|
|
loss_mpd /= len(loss_mpd_real)
|
|
loss_mrd /= len(loss_mrd_real)
|
|
|
|
loss_disc_all = loss_mpd + params.mrd_loss_scale * loss_mrd
|
|
|
|
info = MetricsTracker()
|
|
# MetricsTracker will norm the loss value with "frames", set it to 1 here to
|
|
# make tot_loss look normal.
|
|
info["frames"] = 1
|
|
info["loss_disc"] = loss_disc_all.detach().cpu().item()
|
|
info["loss_disc_mrd"] = loss_mrd.detach().cpu().item()
|
|
info["loss_disc_mpd"] = loss_mpd.detach().cpu().item()
|
|
|
|
for i in range(len(loss_mpd_real)):
|
|
info[f"loss_disc_mpd_period_{i+1}"] = loss_mpd_real[i] + loss_mpd_gen[i]
|
|
for i in range(len(loss_mrd_real)):
|
|
info[f"loss_disc_mrd_resolution_{i+1}"] = loss_mrd_real[i] + loss_mrd_gen[i]
|
|
|
|
return loss_disc_all, info
|
|
|
|
|
|
def train_one_epoch(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
optimizer_g: Optimizer,
|
|
optimizer_d: Optimizer,
|
|
scheduler_g: ExponentialLR,
|
|
scheduler_d: ExponentialLR,
|
|
train_dl: torch.utils.data.DataLoader,
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
scaler: GradScaler,
|
|
tb_writer: Optional[SummaryWriter] = None,
|
|
world_size: int = 1,
|
|
rank: int = 0,
|
|
) -> None:
|
|
"""Train the model for one epoch.
|
|
|
|
The training loss from the mean of all frames is saved in
|
|
`params.train_loss`. It runs the validation process every
|
|
`params.valid_interval` batches.
|
|
|
|
Args:
|
|
params:
|
|
It is returned by :func:`get_params`.
|
|
model:
|
|
The model for training.
|
|
optimizer:
|
|
The optimizer.
|
|
scheduler:
|
|
The learning rate scheduler, we call step() every epoch.
|
|
train_dl:
|
|
Dataloader for the training dataset.
|
|
valid_dl:
|
|
Dataloader for the validation dataset.
|
|
scaler:
|
|
The scaler used for mix precision training.
|
|
tb_writer:
|
|
Writer to write log messages to tensorboard.
|
|
world_size:
|
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
|
rank:
|
|
The rank of the node in DDP training. If no DDP is used, it should
|
|
be set to 0.
|
|
"""
|
|
model.train()
|
|
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
|
|
|
# used to track the stats over iterations in one epoch
|
|
tot_loss = MetricsTracker()
|
|
|
|
saved_bad_model = False
|
|
|
|
def save_bad_model(suffix: str = ""):
|
|
save_checkpoint(
|
|
filename=params.exp_dir / f"bad-model{suffix}-{rank}.pt",
|
|
model=model,
|
|
params=params,
|
|
optimizer_g=optimizer_g,
|
|
optimizer_d=optimizer_d,
|
|
scheduler_g=scheduler_g,
|
|
scheduler_d=scheduler_d,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=0,
|
|
)
|
|
|
|
for batch_idx, batch in enumerate(train_dl):
|
|
params.batch_idx_train += 1
|
|
batch_size = batch["features_lens"].size(0)
|
|
|
|
features = batch["features"].to(device) # (B, T, F)
|
|
features_lens = batch["features_lens"].to(device)
|
|
audios = batch["audio"].to(device)
|
|
|
|
segment_frames = (
|
|
params.segment_size - params.frame_length
|
|
) // params.frame_shift + 1
|
|
|
|
# segment_frames = (
|
|
# params.segment_size + params.frame_shift // 2
|
|
# ) // params.frame_shift
|
|
|
|
start_p = random.randint(0, features_lens.min() - (segment_frames + 1))
|
|
|
|
features = features[:, start_p : start_p + segment_frames, :].permute(
|
|
0, 2, 1
|
|
) # (B, F, T)
|
|
|
|
audios = audios[
|
|
:,
|
|
start_p * params.frame_shift : start_p * params.frame_shift
|
|
+ params.segment_size,
|
|
] # (B, T)
|
|
|
|
try:
|
|
optimizer_d.zero_grad()
|
|
|
|
loss_disc, loss_disc_info = compute_discriminator_loss(
|
|
params=params,
|
|
model=model,
|
|
features=features,
|
|
audios=audios,
|
|
)
|
|
|
|
loss_disc.backward()
|
|
optimizer_d.step()
|
|
|
|
optimizer_g.zero_grad()
|
|
loss_gen, loss_gen_info = compute_generator_loss(
|
|
params=params,
|
|
model=model,
|
|
features=features,
|
|
audios=audios,
|
|
)
|
|
|
|
loss_gen.backward()
|
|
optimizer_g.step()
|
|
|
|
loss_info = loss_gen_info + loss_disc_info
|
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_gen_info
|
|
|
|
except Exception as e:
|
|
logging.info(f"Caught exception : {e}.")
|
|
save_bad_model()
|
|
raise
|
|
|
|
if params.print_diagnostics and batch_idx == 5:
|
|
return
|
|
|
|
if params.batch_idx_train % 100 == 0 and params.use_fp16:
|
|
# If the grad scale was less than 1, try increasing it. The _growth_interval
|
|
# of the grad scaler is configurable, but we can't configure it to have different
|
|
# behavior depending on the current grad scale.
|
|
cur_grad_scale = scaler._scale.item()
|
|
|
|
if cur_grad_scale < 8.0 or (
|
|
cur_grad_scale < 32.0 and params.batch_idx_train % 400 == 0
|
|
):
|
|
scaler.update(cur_grad_scale * 2.0)
|
|
if cur_grad_scale < 0.01:
|
|
if not saved_bad_model:
|
|
save_bad_model(suffix="-first-warning")
|
|
saved_bad_model = True
|
|
logging.warning(f"Grad scale is small: {cur_grad_scale}")
|
|
if cur_grad_scale < 1.0e-05:
|
|
save_bad_model()
|
|
raise RuntimeError(
|
|
f"grad_scale is too small, exiting: {cur_grad_scale}"
|
|
)
|
|
|
|
if params.batch_idx_train % params.log_interval == 0:
|
|
cur_lr_g = max(scheduler_g.get_last_lr())
|
|
cur_lr_d = max(scheduler_d.get_last_lr())
|
|
cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0
|
|
|
|
logging.info(
|
|
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
|
f"global_batch_idx: {params.batch_idx_train}, batch size: {batch_size}, "
|
|
f"loss[{loss_info}], tot_loss[{tot_loss}], "
|
|
f"cur_lr_g: {cur_lr_g:.2e}, "
|
|
f"cur_lr_d: {cur_lr_d:.2e}, "
|
|
+ (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "")
|
|
)
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar(
|
|
"train/learning_rate_gen", cur_lr_g, params.batch_idx_train
|
|
)
|
|
tb_writer.add_scalar(
|
|
"train/learning_rate_disc", cur_lr_d, params.batch_idx_train
|
|
)
|
|
loss_info.write_summary(
|
|
tb_writer, "train/current_", params.batch_idx_train
|
|
)
|
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
|
if params.use_fp16:
|
|
tb_writer.add_scalar(
|
|
"train/grad_scale", cur_grad_scale, params.batch_idx_train
|
|
)
|
|
|
|
# if (
|
|
# params.batch_idx_train % params.valid_interval == 0
|
|
# and not params.print_diagnostics
|
|
# ):
|
|
if True:
|
|
logging.info("Computing validation loss")
|
|
valid_info = compute_validation_loss(
|
|
params=params,
|
|
model=model,
|
|
valid_dl=valid_dl,
|
|
world_size=world_size,
|
|
rank=rank,
|
|
tb_writer=tb_writer,
|
|
)
|
|
model.train()
|
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
|
logging.info(
|
|
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
|
|
)
|
|
if tb_writer is not None:
|
|
valid_info.write_summary(
|
|
tb_writer, "train/valid_", params.batch_idx_train
|
|
)
|
|
|
|
scheduler_g.step()
|
|
scheduler_d.step()
|
|
loss_value = tot_loss["loss_gen"]
|
|
params.train_loss = loss_value
|
|
if params.train_loss < params.best_train_loss:
|
|
params.best_train_epoch = params.cur_epoch
|
|
params.best_train_loss = params.train_loss
|
|
|
|
|
|
def compute_validation_loss(
|
|
params: AttributeDict,
|
|
model: Union[nn.Module, DDP],
|
|
valid_dl: torch.utils.data.DataLoader,
|
|
world_size: int = 1,
|
|
rank: int = 0,
|
|
tb_writer: Optional[SummaryWriter] = None,
|
|
) -> MetricsTracker:
|
|
"""Run the validation process."""
|
|
|
|
model.eval()
|
|
torch.cuda.empty_cache()
|
|
model = model.module if isinstance(model, DDP) else model
|
|
device = next(model.parameters()).device
|
|
|
|
# used to summary the stats over iterations
|
|
tot_loss = MetricsTracker()
|
|
|
|
with torch.no_grad():
|
|
infer_time = 0
|
|
audio_time = 0
|
|
for batch_idx, batch in enumerate(valid_dl):
|
|
features = batch["features"] # (B, T, F)
|
|
features_lens = batch["features_lens"]
|
|
|
|
audio_time += torch.sum(features_lens)
|
|
|
|
x = features.permute(0, 2, 1) # (B, F, T)
|
|
y = batch["audio"].to(device) # (B, T)
|
|
|
|
start = time.time()
|
|
y_g_hat = model(x.to(device)) # (B, T)
|
|
infer_time += time.time() - start
|
|
|
|
if y_g_hat.size(1) > y.size(1):
|
|
y = torch.cat(
|
|
[
|
|
y,
|
|
torch.zeros(
|
|
(y.size(0), y_g_hat.size(1) - y.size(1)), device=device
|
|
),
|
|
],
|
|
dim=1,
|
|
)
|
|
else:
|
|
y = y[:, 0 : y_g_hat.size(1)]
|
|
|
|
loss_mel_error = model.melspec_loss(y_g_hat, y)
|
|
|
|
loss_info = MetricsTracker()
|
|
# MetricsTracker will norm the loss value with "frames", set it to 1 here to
|
|
# make tot_loss look normal.
|
|
loss_info["frames"] = 1
|
|
loss_info["loss_mel_error"] = loss_mel_error.item()
|
|
|
|
tot_loss = tot_loss + loss_info
|
|
|
|
if batch_idx <= 5 and rank == 0 and tb_writer is not None:
|
|
if params.batch_idx_train == params.valid_interval:
|
|
tb_writer.add_audio(
|
|
"gt/y_{}".format(batch_idx),
|
|
y[0],
|
|
params.batch_idx_train,
|
|
params.sampling_rate,
|
|
)
|
|
tb_writer.add_audio(
|
|
"generated/y_hat_{}".format(batch_idx),
|
|
y_g_hat[0],
|
|
params.batch_idx_train,
|
|
params.sampling_rate,
|
|
)
|
|
|
|
logging.info(f"RTF : {infer_time / (audio_time * 10 / 1000)}")
|
|
|
|
if world_size > 1:
|
|
tot_loss.reduce(device)
|
|
|
|
loss_value = tot_loss["loss_mel_error"]
|
|
if loss_value < params.best_valid_loss:
|
|
params.best_valid_epoch = params.cur_epoch
|
|
params.best_valid_loss = loss_value
|
|
|
|
return tot_loss
|
|
|
|
|
|
def run(rank, world_size, args):
|
|
"""
|
|
Args:
|
|
rank:
|
|
It is a value between 0 and `world_size-1`, which is
|
|
passed automatically by `mp.spawn()` in :func:`main`.
|
|
The node with rank 0 is responsible for saving checkpoint.
|
|
world_size:
|
|
Number of GPUs for DDP training.
|
|
args:
|
|
The return value of get_parser().parse_args()
|
|
"""
|
|
params = get_params()
|
|
params.update(vars(args))
|
|
torch.autograd.set_detect_anomaly(True)
|
|
|
|
fix_random_seed(params.seed)
|
|
if world_size > 1:
|
|
setup_dist(rank, world_size, params.master_port)
|
|
|
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
|
|
|
logging.info("Training started")
|
|
|
|
if args.tensorboard and rank == 0:
|
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
|
else:
|
|
tb_writer = None
|
|
|
|
device = torch.device("cpu")
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda", rank)
|
|
logging.info(f"Device: {device}")
|
|
params.device = device
|
|
logging.info(params)
|
|
logging.info("About to create model")
|
|
|
|
model = get_model(params)
|
|
|
|
assert params.start_epoch > 0, params.start_epoch
|
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
|
|
|
model = model.to(device)
|
|
head = model.head
|
|
backbone = model.backbone
|
|
mrd = model.mrd
|
|
mpd = model.mpd
|
|
if world_size > 1:
|
|
logging.info("Using DDP")
|
|
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
|
|
|
optimizer_g = torch.optim.AdamW(
|
|
itertools.chain(head.parameters(), backbone.parameters()),
|
|
params.learning_rate,
|
|
betas=[params.adam_b1, params.adam_b2],
|
|
)
|
|
optimizer_d = torch.optim.AdamW(
|
|
itertools.chain(mrd.parameters(), mpd.parameters()),
|
|
params.learning_rate,
|
|
betas=[params.adam_b1, params.adam_b2],
|
|
)
|
|
|
|
scheduler_g = get_cosine_schedule_with_warmup(
|
|
optimizer_g,
|
|
num_warmup_steps=params.warmup_steps,
|
|
num_training_steps=params.max_steps,
|
|
)
|
|
scheduler_d = get_cosine_schedule_with_warmup(
|
|
optimizer_d,
|
|
num_warmup_steps=params.warmup_steps,
|
|
num_training_steps=params.max_steps,
|
|
)
|
|
|
|
if checkpoints is not None:
|
|
# load state_dict for optimizers
|
|
if "optimizer_g" in checkpoints:
|
|
logging.info("Loading generator optimizer state dict")
|
|
optimizer_g.load_state_dict(checkpoints["optimizer_g"])
|
|
if "optimizer_d" in checkpoints:
|
|
logging.info("Loading discriminator optimizer state dict")
|
|
optimizer_d.load_state_dict(checkpoints["optimizer_d"])
|
|
|
|
# load state_dict for schedulers
|
|
if "scheduler_g" in checkpoints:
|
|
logging.info("Loading generator scheduler state dict")
|
|
scheduler_g.load_state_dict(checkpoints["scheduler_g"])
|
|
if "scheduler_d" in checkpoints:
|
|
logging.info("Loading discriminator scheduler state dict")
|
|
scheduler_d.load_state_dict(checkpoints["scheduler_d"])
|
|
|
|
if params.print_diagnostics:
|
|
opts = diagnostics.TensorDiagnosticOptions(
|
|
512
|
|
) # allow 4 megabytes per sub-module
|
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
|
|
|
if params.inf_check:
|
|
register_inf_check_hooks(model)
|
|
|
|
ljspeech = LJSpeechTtsDataModule(args)
|
|
|
|
train_cuts = ljspeech.train_cuts()
|
|
|
|
def remove_short_and_long_utt(c: Cut):
|
|
# Keep only utterances with duration between 1 second and 20 seconds
|
|
# You should use ../local/display_manifest_statistics.py to get
|
|
# an utterance duration distribution for your dataset to select
|
|
# the threshold
|
|
if c.duration < 1.0 or c.duration > 20.0:
|
|
return False
|
|
return True
|
|
|
|
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
|
train_dl = ljspeech.train_dataloaders(train_cuts)
|
|
|
|
valid_cuts = ljspeech.valid_cuts()
|
|
valid_dl = ljspeech.valid_dataloaders(valid_cuts)
|
|
|
|
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
|
|
if checkpoints and "grad_scaler" in checkpoints:
|
|
logging.info("Loading grad scaler state dict")
|
|
scaler.load_state_dict(checkpoints["grad_scaler"])
|
|
|
|
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
|
logging.info(f"Start epoch {epoch}")
|
|
|
|
fix_random_seed(params.seed + epoch - 1)
|
|
train_dl.sampler.set_epoch(epoch - 1)
|
|
|
|
params.cur_epoch = epoch
|
|
|
|
if tb_writer is not None:
|
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
|
|
|
train_one_epoch(
|
|
params=params,
|
|
model=model,
|
|
optimizer_g=optimizer_g,
|
|
optimizer_d=optimizer_d,
|
|
scheduler_g=scheduler_g,
|
|
scheduler_d=scheduler_d,
|
|
train_dl=train_dl,
|
|
valid_dl=valid_dl,
|
|
scaler=scaler,
|
|
tb_writer=tb_writer,
|
|
world_size=world_size,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.print_diagnostics:
|
|
diagnostic.print_diagnostics()
|
|
break
|
|
|
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
|
save_checkpoint(
|
|
filename=filename,
|
|
params=params,
|
|
model=model,
|
|
optimizer_g=optimizer_g,
|
|
optimizer_d=optimizer_d,
|
|
scheduler_g=scheduler_g,
|
|
scheduler_d=scheduler_d,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
|
|
if params.batch_idx_train % params.save_every_n == 0:
|
|
filename = params.exp_dir / f"checkpoint-{params.batch_idx_train}.pt"
|
|
save_checkpoint(
|
|
filename=filename,
|
|
params=params,
|
|
model=model,
|
|
optimizer_g=optimizer_g,
|
|
optimizer_d=optimizer_d,
|
|
scheduler_g=scheduler_g,
|
|
scheduler_d=scheduler_d,
|
|
sampler=train_dl.sampler,
|
|
scaler=scaler,
|
|
rank=rank,
|
|
)
|
|
if rank == 0:
|
|
if params.best_train_epoch == params.cur_epoch:
|
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
|
copyfile(src=filename, dst=best_train_filename)
|
|
|
|
if params.best_valid_epoch == params.cur_epoch:
|
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
|
copyfile(src=filename, dst=best_valid_filename)
|
|
|
|
logging.info("Done!")
|
|
|
|
if world_size > 1:
|
|
torch.distributed.barrier()
|
|
cleanup_dist()
|
|
|
|
|
|
def main():
|
|
parser = get_parser()
|
|
LJSpeechTtsDataModule.add_arguments(parser)
|
|
args = parser.parse_args()
|
|
args.exp_dir = Path(args.exp_dir)
|
|
|
|
world_size = args.world_size
|
|
assert world_size >= 1
|
|
if world_size > 1:
|
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
|
else:
|
|
run(rank=0, world_size=1, args=args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
torch.set_num_threads(1)
|
|
torch.set_num_interop_threads(1)
|
|
main()
|