mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Add vocos vocoder
This commit is contained in:
parent
57451b0382
commit
9c917a0366
127
egs/ljspeech/TTS/vocos/backbone.py
Normal file
127
egs/ljspeech/TTS/vocos/backbone.py
Normal file
@ -0,0 +1,127 @@
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn.utils import weight_norm
|
||||
|
||||
from modules import ConvNeXtBlock, ResBlock1, AdaLayerNorm
|
||||
|
||||
|
||||
class Backbone(nn.Module):
|
||||
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers."""
|
||||
|
||||
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size,
|
||||
C denotes output features, and L is the sequence length.
|
||||
|
||||
Returns:
|
||||
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length,
|
||||
and H denotes the model dimension.
|
||||
"""
|
||||
raise NotImplementedError("Subclasses must implement the forward method.")
|
||||
|
||||
|
||||
class VocosBackbone(Backbone):
|
||||
"""
|
||||
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization
|
||||
|
||||
Args:
|
||||
input_channels (int): Number of input features channels.
|
||||
dim (int): Hidden dimension of the model.
|
||||
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock.
|
||||
num_layers (int): Number of ConvNeXtBlock layers.
|
||||
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`.
|
||||
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
|
||||
None means non-conditional model. Defaults to None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_channels: int,
|
||||
dim: int,
|
||||
intermediate_dim: int,
|
||||
num_layers: int,
|
||||
layer_scale_init_value: Optional[float] = None,
|
||||
adanorm_num_embeddings: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.input_channels = input_channels
|
||||
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3)
|
||||
self.adanorm = adanorm_num_embeddings is not None
|
||||
if adanorm_num_embeddings:
|
||||
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
|
||||
else:
|
||||
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
||||
layer_scale_init_value = layer_scale_init_value or 1 / num_layers
|
||||
self.convnext = nn.ModuleList(
|
||||
[
|
||||
ConvNeXtBlock(
|
||||
dim=dim,
|
||||
intermediate_dim=intermediate_dim,
|
||||
layer_scale_init_value=layer_scale_init_value,
|
||||
adanorm_num_embeddings=adanorm_num_embeddings,
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
)
|
||||
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, (nn.Conv1d, nn.Linear)):
|
||||
nn.init.trunc_normal_(m.weight, std=0.02)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
||||
bandwidth_id = kwargs.get("bandwidth_id", None)
|
||||
x = self.embed(x)
|
||||
if self.adanorm:
|
||||
assert bandwidth_id is not None
|
||||
x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id)
|
||||
else:
|
||||
x = self.norm(x.transpose(1, 2))
|
||||
x = x.transpose(1, 2)
|
||||
for conv_block in self.convnext:
|
||||
x = conv_block(x, cond_embedding_id=bandwidth_id)
|
||||
x = self.final_layer_norm(x.transpose(1, 2))
|
||||
return x
|
||||
|
||||
|
||||
class VocosResNetBackbone(Backbone):
|
||||
"""
|
||||
Vocos backbone module built with ResBlocks.
|
||||
|
||||
Args:
|
||||
input_channels (int): Number of input features channels.
|
||||
dim (int): Hidden dimension of the model.
|
||||
num_blocks (int): Number of ResBlock1 blocks.
|
||||
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_channels,
|
||||
dim,
|
||||
num_blocks,
|
||||
layer_scale_init_value=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.input_channels = input_channels
|
||||
self.embed = weight_norm(
|
||||
nn.Conv1d(input_channels, dim, kernel_size=3, padding=1)
|
||||
)
|
||||
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3
|
||||
self.resnet = nn.Sequential(
|
||||
*[
|
||||
ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value)
|
||||
for _ in range(num_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
||||
x = self.embed(x)
|
||||
x = self.resnet(x)
|
||||
x = x.transpose(1, 2)
|
||||
return x
|
296
egs/ljspeech/TTS/vocos/discriminators.py
Normal file
296
egs/ljspeech/TTS/vocos/discriminators.py
Normal file
@ -0,0 +1,296 @@
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from torch import nn
|
||||
from torch.nn import Conv2d
|
||||
from torch.nn.utils import weight_norm
|
||||
from torchaudio.transforms import Spectrogram
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(nn.Module):
|
||||
"""
|
||||
Multi-Period Discriminator module adapted from https://github.com/jik876/hifi-gan.
|
||||
Additionally, it allows incorporating conditional information with a learned embeddings table.
|
||||
|
||||
Args:
|
||||
periods (tuple[int]): Tuple of periods for each discriminator.
|
||||
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
|
||||
Defaults to None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
periods: Tuple[int, ...] = (2, 3, 5, 7, 11),
|
||||
num_embeddings: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.discriminators = nn.ModuleList(
|
||||
[DiscriminatorP(period=p, num_embeddings=num_embeddings) for p in periods]
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
y: torch.Tensor,
|
||||
y_hat: torch.Tensor,
|
||||
bandwidth_id: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[
|
||||
List[torch.Tensor],
|
||||
List[torch.Tensor],
|
||||
List[List[torch.Tensor]],
|
||||
List[List[torch.Tensor]],
|
||||
]:
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
for d in self.discriminators:
|
||||
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
|
||||
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
period: int,
|
||||
in_channels: int = 1,
|
||||
kernel_size: int = 5,
|
||||
stride: int = 3,
|
||||
lrelu_slope: float = 0.1,
|
||||
num_embeddings: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.period = period
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv2d(
|
||||
in_channels,
|
||||
32,
|
||||
(kernel_size, 1),
|
||||
(stride, 1),
|
||||
padding=(kernel_size // 2, 0),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv2d(
|
||||
32,
|
||||
128,
|
||||
(kernel_size, 1),
|
||||
(stride, 1),
|
||||
padding=(kernel_size // 2, 0),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv2d(
|
||||
128,
|
||||
512,
|
||||
(kernel_size, 1),
|
||||
(stride, 1),
|
||||
padding=(kernel_size // 2, 0),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv2d(
|
||||
512,
|
||||
1024,
|
||||
(kernel_size, 1),
|
||||
(stride, 1),
|
||||
padding=(kernel_size // 2, 0),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv2d(
|
||||
1024,
|
||||
1024,
|
||||
(kernel_size, 1),
|
||||
(1, 1),
|
||||
padding=(kernel_size // 2, 0),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
if num_embeddings is not None:
|
||||
self.emb = torch.nn.Embedding(
|
||||
num_embeddings=num_embeddings, embedding_dim=1024
|
||||
)
|
||||
torch.nn.init.zeros_(self.emb.weight)
|
||||
|
||||
self.conv_post = weight_norm(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
||||
self.lrelu_slope = lrelu_slope
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None
|
||||
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
||||
x = x.unsqueeze(1)
|
||||
fmap = []
|
||||
# 1d to 2d
|
||||
b, c, t = x.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x = torch.nn.functional.pad(x, (0, n_pad), "reflect")
|
||||
t = t + n_pad
|
||||
x = x.view(b, c, t // self.period, self.period)
|
||||
|
||||
for i, l in enumerate(self.convs):
|
||||
x = l(x)
|
||||
x = torch.nn.functional.leaky_relu(x, self.lrelu_slope)
|
||||
if i > 0:
|
||||
fmap.append(x)
|
||||
if cond_embedding_id is not None:
|
||||
emb = self.emb(cond_embedding_id)
|
||||
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
|
||||
else:
|
||||
h = 0
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x += h
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiResolutionDiscriminator(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
|
||||
num_embeddings: Optional[int] = None,
|
||||
):
|
||||
"""
|
||||
Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
|
||||
Additionally, it allows incorporating conditional information with a learned embeddings table.
|
||||
|
||||
Args:
|
||||
fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
|
||||
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
|
||||
Defaults to None.
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
self.discriminators = nn.ModuleList(
|
||||
[
|
||||
DiscriminatorR(window_length=w, num_embeddings=num_embeddings)
|
||||
for w in fft_sizes
|
||||
]
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
|
||||
) -> Tuple[
|
||||
List[torch.Tensor],
|
||||
List[torch.Tensor],
|
||||
List[List[torch.Tensor]],
|
||||
List[List[torch.Tensor]],
|
||||
]:
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
|
||||
for d in self.discriminators:
|
||||
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
|
||||
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorR(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
window_length: int,
|
||||
num_embeddings: Optional[int] = None,
|
||||
channels: int = 32,
|
||||
hop_factor: float = 0.25,
|
||||
bands: Tuple[Tuple[float, float], ...] = (
|
||||
(0.0, 0.1),
|
||||
(0.1, 0.25),
|
||||
(0.25, 0.5),
|
||||
(0.5, 0.75),
|
||||
(0.75, 1.0),
|
||||
),
|
||||
):
|
||||
super().__init__()
|
||||
self.window_length = window_length
|
||||
self.hop_factor = hop_factor
|
||||
self.spec_fn = Spectrogram(
|
||||
n_fft=window_length,
|
||||
hop_length=int(window_length * hop_factor),
|
||||
win_length=window_length,
|
||||
power=None,
|
||||
)
|
||||
n_fft = window_length // 2 + 1
|
||||
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
||||
self.bands = bands
|
||||
convs = lambda: nn.ModuleList(
|
||||
[
|
||||
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
|
||||
weight_norm(
|
||||
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))
|
||||
),
|
||||
weight_norm(
|
||||
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))
|
||||
),
|
||||
weight_norm(
|
||||
nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))
|
||||
),
|
||||
weight_norm(
|
||||
nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))
|
||||
),
|
||||
]
|
||||
)
|
||||
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
||||
|
||||
if num_embeddings is not None:
|
||||
self.emb = torch.nn.Embedding(
|
||||
num_embeddings=num_embeddings, embedding_dim=channels
|
||||
)
|
||||
torch.nn.init.zeros_(self.emb.weight)
|
||||
|
||||
self.conv_post = weight_norm(
|
||||
nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1))
|
||||
)
|
||||
|
||||
def spectrogram(self, x):
|
||||
# Remove DC offset
|
||||
x = x - x.mean(dim=-1, keepdims=True)
|
||||
# Peak normalize the volume of input audio
|
||||
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
||||
x = self.spec_fn(x)
|
||||
x = torch.view_as_real(x)
|
||||
x = rearrange(x, "b f t c -> b c t f")
|
||||
# Split into bands
|
||||
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
|
||||
return x_bands
|
||||
|
||||
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
|
||||
x_bands = self.spectrogram(x)
|
||||
fmap = []
|
||||
x = []
|
||||
for band, stack in zip(x_bands, self.band_convs):
|
||||
for i, layer in enumerate(stack):
|
||||
band = layer(band)
|
||||
band = torch.nn.functional.leaky_relu(band, 0.1)
|
||||
if i > 0:
|
||||
fmap.append(band)
|
||||
x.append(band)
|
||||
x = torch.cat(x, dim=-1)
|
||||
if cond_embedding_id is not None:
|
||||
emb = self.emb(cond_embedding_id)
|
||||
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
|
||||
else:
|
||||
h = 0
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x += h
|
||||
|
||||
return x, fmap
|
178
egs/ljspeech/TTS/vocos/heads.py
Normal file
178
egs/ljspeech/TTS/vocos/heads.py
Normal file
@ -0,0 +1,178 @@
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torchaudio.functional.functional import _hz_to_mel, _mel_to_hz
|
||||
|
||||
from spectral_ops import IMDCT, ISTFT
|
||||
from modules import symexp
|
||||
|
||||
|
||||
class FourierHead(nn.Module):
|
||||
"""Base class for inverse fourier modules."""
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
||||
L is the sequence length, and H denotes the model dimension.
|
||||
|
||||
Returns:
|
||||
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
||||
"""
|
||||
raise NotImplementedError("Subclasses must implement the forward method.")
|
||||
|
||||
|
||||
class ISTFTHead(FourierHead):
|
||||
"""
|
||||
ISTFT Head module for predicting STFT complex coefficients.
|
||||
|
||||
Args:
|
||||
dim (int): Hidden dimension of the model.
|
||||
n_fft (int): Size of Fourier transform.
|
||||
hop_length (int): The distance between neighboring sliding window frames, which should align with
|
||||
the resolution of the input features.
|
||||
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
||||
"""
|
||||
|
||||
def __init__(self, dim: int, n_fft: int, hop_length: int, padding: str = "same"):
|
||||
super().__init__()
|
||||
out_dim = n_fft + 2
|
||||
self.out = torch.nn.Linear(dim, out_dim)
|
||||
self.istft = ISTFT(
|
||||
n_fft=n_fft, hop_length=hop_length, win_length=n_fft, padding=padding
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass of the ISTFTHead module.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
||||
L is the sequence length, and H denotes the model dimension.
|
||||
|
||||
Returns:
|
||||
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
||||
"""
|
||||
x = self.out(x).transpose(1, 2)
|
||||
mag, p = x.chunk(2, dim=1)
|
||||
mag = torch.exp(mag)
|
||||
mag = torch.clip(
|
||||
mag, max=1e2
|
||||
) # safeguard to prevent excessively large magnitudes
|
||||
# wrapping happens here. These two lines produce real and imaginary value
|
||||
x = torch.cos(p)
|
||||
y = torch.sin(p)
|
||||
# recalculating phase here does not produce anything new
|
||||
# only costs time
|
||||
# phase = torch.atan2(y, x)
|
||||
# S = mag * torch.exp(phase * 1j)
|
||||
# better directly produce the complex value
|
||||
S = mag * (x + 1j * y)
|
||||
audio = self.istft(S)
|
||||
return audio
|
||||
|
||||
|
||||
class IMDCTSymExpHead(FourierHead):
|
||||
"""
|
||||
IMDCT Head module for predicting MDCT coefficients with symmetric exponential function
|
||||
|
||||
Args:
|
||||
dim (int): Hidden dimension of the model.
|
||||
mdct_frame_len (int): Length of the MDCT frame.
|
||||
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
||||
sample_rate (int, optional): The sample rate of the audio. If provided, the last layer will be initialized
|
||||
based on perceptual scaling. Defaults to None.
|
||||
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
mdct_frame_len: int,
|
||||
padding: str = "same",
|
||||
sample_rate: Optional[int] = None,
|
||||
clip_audio: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
out_dim = mdct_frame_len // 2
|
||||
self.out = nn.Linear(dim, out_dim)
|
||||
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)
|
||||
self.clip_audio = clip_audio
|
||||
|
||||
if sample_rate is not None:
|
||||
# optionally init the last layer following mel-scale
|
||||
m_max = _hz_to_mel(sample_rate // 2)
|
||||
m_pts = torch.linspace(0, m_max, out_dim)
|
||||
f_pts = _mel_to_hz(m_pts)
|
||||
scale = 1 - (f_pts / f_pts.max())
|
||||
|
||||
with torch.no_grad():
|
||||
self.out.weight.mul_(scale.view(-1, 1))
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass of the IMDCTSymExpHead module.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
||||
L is the sequence length, and H denotes the model dimension.
|
||||
|
||||
Returns:
|
||||
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
||||
"""
|
||||
x = self.out(x)
|
||||
x = symexp(x)
|
||||
x = torch.clip(
|
||||
x, min=-1e2, max=1e2
|
||||
) # safeguard to prevent excessively large magnitudes
|
||||
audio = self.imdct(x)
|
||||
if self.clip_audio:
|
||||
audio = torch.clip(x, min=-1.0, max=1.0)
|
||||
|
||||
return audio
|
||||
|
||||
|
||||
class IMDCTCosHead(FourierHead):
|
||||
"""
|
||||
IMDCT Head module for predicting MDCT coefficients with parametrizing MDCT = exp(m) · cos(p)
|
||||
|
||||
Args:
|
||||
dim (int): Hidden dimension of the model.
|
||||
mdct_frame_len (int): Length of the MDCT frame.
|
||||
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
||||
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
mdct_frame_len: int,
|
||||
padding: str = "same",
|
||||
clip_audio: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.clip_audio = clip_audio
|
||||
self.out = nn.Linear(dim, mdct_frame_len)
|
||||
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Forward pass of the IMDCTCosHead module.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
||||
L is the sequence length, and H denotes the model dimension.
|
||||
|
||||
Returns:
|
||||
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
||||
"""
|
||||
x = self.out(x)
|
||||
m, p = x.chunk(2, dim=2)
|
||||
m = torch.exp(m).clip(
|
||||
max=1e2
|
||||
) # safeguard to prevent excessively large magnitudes
|
||||
audio = self.imdct(m * torch.cos(p))
|
||||
if self.clip_audio:
|
||||
audio = torch.clip(x, min=-1.0, max=1.0)
|
||||
return audio
|
133
egs/ljspeech/TTS/vocos/loss.py
Normal file
133
egs/ljspeech/TTS/vocos/loss.py
Normal file
@ -0,0 +1,133 @@
|
||||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
from torch import nn
|
||||
|
||||
from modules import safe_log
|
||||
|
||||
|
||||
class MelSpecReconstructionLoss(nn.Module):
|
||||
"""
|
||||
L1 distance between the mel-scaled magnitude spectrograms of the ground truth sample and the generated sample
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
sample_rate: int = 24000,
|
||||
n_fft: int = 1024,
|
||||
hop_length: int = 256,
|
||||
n_mels: int = 100,
|
||||
):
|
||||
super().__init__()
|
||||
self.mel_spec = torchaudio.transforms.MelSpectrogram(
|
||||
sample_rate=sample_rate,
|
||||
n_fft=n_fft,
|
||||
hop_length=hop_length,
|
||||
n_mels=n_mels,
|
||||
center=True,
|
||||
power=1,
|
||||
)
|
||||
|
||||
def forward(self, y_hat, y) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
y_hat (Tensor): Predicted audio waveform.
|
||||
y (Tensor): Ground truth audio waveform.
|
||||
|
||||
Returns:
|
||||
Tensor: L1 loss between the mel-scaled magnitude spectrograms.
|
||||
"""
|
||||
mel_hat = safe_log(self.mel_spec(y_hat))
|
||||
mel = safe_log(self.mel_spec(y))
|
||||
|
||||
loss = torch.nn.functional.l1_loss(mel, mel_hat)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
class GeneratorLoss(nn.Module):
|
||||
"""
|
||||
Generator Loss module. Calculates the loss for the generator based on discriminator outputs.
|
||||
"""
|
||||
|
||||
def forward(
|
||||
self, disc_outputs: List[torch.Tensor]
|
||||
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
||||
"""
|
||||
Args:
|
||||
disc_outputs (List[Tensor]): List of discriminator outputs.
|
||||
|
||||
Returns:
|
||||
Tuple[Tensor, List[Tensor]]: Tuple containing the total loss and a list of loss values from
|
||||
the sub-discriminators
|
||||
"""
|
||||
loss = torch.zeros(
|
||||
1, device=disc_outputs[0].device, dtype=disc_outputs[0].dtype
|
||||
)
|
||||
gen_losses = []
|
||||
for dg in disc_outputs:
|
||||
l = torch.mean(torch.clamp(1 - dg, min=0))
|
||||
gen_losses.append(l)
|
||||
loss += l
|
||||
|
||||
return loss, gen_losses
|
||||
|
||||
|
||||
class DiscriminatorLoss(nn.Module):
|
||||
"""
|
||||
Discriminator Loss module. Calculates the loss for the discriminator based on real and generated outputs.
|
||||
"""
|
||||
|
||||
def forward(
|
||||
self,
|
||||
disc_real_outputs: List[torch.Tensor],
|
||||
disc_generated_outputs: List[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, List[torch.Tensor], List[torch.Tensor]]:
|
||||
"""
|
||||
Args:
|
||||
disc_real_outputs (List[Tensor]): List of discriminator outputs for real samples.
|
||||
disc_generated_outputs (List[Tensor]): List of discriminator outputs for generated samples.
|
||||
|
||||
Returns:
|
||||
Tuple[Tensor, List[Tensor], List[Tensor]]: A tuple containing the total loss, a list of loss values from
|
||||
the sub-discriminators for real outputs, and a list of
|
||||
loss values for generated outputs.
|
||||
"""
|
||||
loss = torch.zeros(
|
||||
1, device=disc_real_outputs[0].device, dtype=disc_real_outputs[0].dtype
|
||||
)
|
||||
r_losses = []
|
||||
g_losses = []
|
||||
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||
r_loss = torch.mean(torch.clamp(1 - dr, min=0))
|
||||
g_loss = torch.mean(torch.clamp(1 + dg, min=0))
|
||||
loss += r_loss + g_loss
|
||||
r_losses.append(r_loss.item())
|
||||
g_losses.append(g_loss.item())
|
||||
|
||||
return loss, r_losses, g_losses
|
||||
|
||||
|
||||
class FeatureMatchingLoss(nn.Module):
|
||||
"""
|
||||
Feature Matching Loss module. Calculates the feature matching loss between feature maps of the sub-discriminators.
|
||||
"""
|
||||
|
||||
def forward(
|
||||
self, fmap_r: List[List[torch.Tensor]], fmap_g: List[List[torch.Tensor]]
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
fmap_r (List[List[Tensor]]): List of feature maps from real samples.
|
||||
fmap_g (List[List[Tensor]]): List of feature maps from generated samples.
|
||||
|
||||
Returns:
|
||||
Tensor: The calculated feature matching loss.
|
||||
"""
|
||||
loss = torch.zeros(1, device=fmap_r[0][0].device, dtype=fmap_r[0][0].dtype)
|
||||
for dr, dg in zip(fmap_r, fmap_g):
|
||||
for rl, gl in zip(dr, dg):
|
||||
loss += torch.mean(torch.abs(rl - gl))
|
||||
|
||||
return loss
|
51
egs/ljspeech/TTS/vocos/models.py
Normal file
51
egs/ljspeech/TTS/vocos/models.py
Normal file
@ -0,0 +1,51 @@
|
||||
import logging
|
||||
import torch
|
||||
from backbone import VocosBackbone
|
||||
from heads import ISTFTHead
|
||||
from discriminators import MultiPeriodDiscriminator, MultiResolutionDiscriminator
|
||||
from loss import (
|
||||
DiscriminatorLoss,
|
||||
GeneratorLoss,
|
||||
FeatureMatchingLoss,
|
||||
MelSpecReconstructionLoss,
|
||||
)
|
||||
|
||||
|
||||
class Vocos(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int = 512,
|
||||
n_fft: int = 1024,
|
||||
hop_length: int = 256,
|
||||
feature_dim: int = 80,
|
||||
intermediate_dim: int = 1536,
|
||||
num_layers: int = 8,
|
||||
padding: str = "same",
|
||||
sample_rate: int = 22050,
|
||||
):
|
||||
super(Vocos, self).__init__()
|
||||
self.backbone = VocosBackbone(
|
||||
input_channels=feature_dim,
|
||||
dim=dim,
|
||||
intermediate_dim=intermediate_dim,
|
||||
num_layers=num_layers,
|
||||
)
|
||||
self.head = ISTFTHead(
|
||||
dim=dim,
|
||||
n_fft=n_fft,
|
||||
hop_length=hop_length,
|
||||
padding=padding,
|
||||
)
|
||||
|
||||
self.mpd = MultiPeriodDiscriminator()
|
||||
self.mrd = MultiResolutionDiscriminator()
|
||||
|
||||
self.disc_loss = DiscriminatorLoss()
|
||||
self.gen_loss = GeneratorLoss()
|
||||
self.feat_matching_loss = FeatureMatchingLoss()
|
||||
self.melspec_loss = MelSpecReconstructionLoss(sample_rate=sample_rate)
|
||||
|
||||
def forward(self, features: torch.Tensor):
|
||||
x = self.backbone(features)
|
||||
audio_output = self.head(x)
|
||||
return audio_output
|
213
egs/ljspeech/TTS/vocos/modules.py
Normal file
213
egs/ljspeech/TTS/vocos/modules.py
Normal file
@ -0,0 +1,213 @@
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm
|
||||
|
||||
|
||||
class ConvNeXtBlock(nn.Module):
|
||||
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
intermediate_dim (int): Dimensionality of the intermediate layer.
|
||||
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
|
||||
Defaults to None.
|
||||
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
|
||||
None means non-conditional LayerNorm. Defaults to None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
intermediate_dim: int,
|
||||
layer_scale_init_value: float,
|
||||
adanorm_num_embeddings: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
|
||||
self.adanorm = adanorm_num_embeddings is not None
|
||||
if adanorm_num_embeddings:
|
||||
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
|
||||
else:
|
||||
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
||||
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
|
||||
self.act = nn.GELU()
|
||||
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
||||
self.gamma = (
|
||||
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
|
||||
if layer_scale_init_value > 0
|
||||
else None
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
residual = x
|
||||
x = self.dwconv(x)
|
||||
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
|
||||
if self.adanorm:
|
||||
assert cond_embedding_id is not None
|
||||
x = self.norm(x, cond_embedding_id)
|
||||
else:
|
||||
x = self.norm(x)
|
||||
x = self.pwconv1(x)
|
||||
x = self.act(x)
|
||||
x = self.pwconv2(x)
|
||||
if self.gamma is not None:
|
||||
x = self.gamma * x
|
||||
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
|
||||
|
||||
x = residual + x
|
||||
return x
|
||||
|
||||
|
||||
class AdaLayerNorm(nn.Module):
|
||||
"""
|
||||
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes
|
||||
|
||||
Args:
|
||||
num_embeddings (int): Number of embeddings.
|
||||
embedding_dim (int): Dimension of the embeddings.
|
||||
"""
|
||||
|
||||
def __init__(self, num_embeddings: int, embedding_dim: int, eps: float = 1e-6):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.dim = embedding_dim
|
||||
self.scale = nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim)
|
||||
self.shift = nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim)
|
||||
torch.nn.init.ones_(self.scale.weight)
|
||||
torch.nn.init.zeros_(self.shift.weight)
|
||||
|
||||
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor) -> torch.Tensor:
|
||||
scale = self.scale(cond_embedding_id)
|
||||
shift = self.shift(cond_embedding_id)
|
||||
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps)
|
||||
x = x * scale + shift
|
||||
return x
|
||||
|
||||
|
||||
class ResBlock1(nn.Module):
|
||||
"""
|
||||
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions,
|
||||
but without upsampling layers.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3.
|
||||
dilation (tuple[int], optional): Dilation factors for the dilated convolutions.
|
||||
Defaults to (1, 3, 5).
|
||||
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function.
|
||||
Defaults to 0.1.
|
||||
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
|
||||
Defaults to None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
kernel_size: int = 3,
|
||||
dilation: Tuple[int, int, int] = (1, 3, 5),
|
||||
lrelu_slope: float = 0.1,
|
||||
layer_scale_init_value: Optional[float] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.lrelu_slope = lrelu_slope
|
||||
self.convs1 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
nn.Conv1d(
|
||||
dim,
|
||||
dim,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[0],
|
||||
padding=self.get_padding(kernel_size, dilation[0]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
nn.Conv1d(
|
||||
dim,
|
||||
dim,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[1],
|
||||
padding=self.get_padding(kernel_size, dilation[1]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
nn.Conv1d(
|
||||
dim,
|
||||
dim,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[2],
|
||||
padding=self.get_padding(kernel_size, dilation[2]),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
self.convs2 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(nn.Conv1d(dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1))),
|
||||
weight_norm(nn.Conv1d(dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1))),
|
||||
weight_norm(nn.Conv1d(dim, dim, kernel_size, 1, dilation=1, padding=self.get_padding(kernel_size, 1))),
|
||||
]
|
||||
)
|
||||
|
||||
self.gamma = nn.ParameterList(
|
||||
[
|
||||
nn.Parameter(layer_scale_init_value * torch.ones(dim, 1), requires_grad=True)
|
||||
if layer_scale_init_value is not None
|
||||
else None,
|
||||
nn.Parameter(layer_scale_init_value * torch.ones(dim, 1), requires_grad=True)
|
||||
if layer_scale_init_value is not None
|
||||
else None,
|
||||
nn.Parameter(layer_scale_init_value * torch.ones(dim, 1), requires_grad=True)
|
||||
if layer_scale_init_value is not None
|
||||
else None,
|
||||
]
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma):
|
||||
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope)
|
||||
xt = c1(xt)
|
||||
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope)
|
||||
xt = c2(xt)
|
||||
if gamma is not None:
|
||||
xt = gamma * xt
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
@staticmethod
|
||||
def get_padding(kernel_size: int, dilation: int = 1) -> int:
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
|
||||
def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor:
|
||||
"""
|
||||
Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input tensor.
|
||||
clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7.
|
||||
|
||||
Returns:
|
||||
Tensor: Element-wise logarithm of the input tensor with clipping applied.
|
||||
"""
|
||||
return torch.log(torch.clip(x, min=clip_val))
|
||||
|
||||
|
||||
def symlog(x: torch.Tensor) -> torch.Tensor:
|
||||
return torch.sign(x) * torch.log1p(x.abs())
|
||||
|
||||
|
||||
def symexp(x: torch.Tensor) -> torch.Tensor:
|
||||
return torch.sign(x) * (torch.exp(x.abs()) - 1)
|
230
egs/ljspeech/TTS/vocos/spectral_ops.py
Normal file
230
egs/ljspeech/TTS/vocos/spectral_ops.py
Normal file
@ -0,0 +1,230 @@
|
||||
import numpy as np
|
||||
import scipy
|
||||
import torch
|
||||
from torch import nn, view_as_real, view_as_complex
|
||||
|
||||
|
||||
class ISTFT(nn.Module):
|
||||
"""
|
||||
Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with
|
||||
windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges.
|
||||
See issue: https://github.com/pytorch/pytorch/issues/62323
|
||||
Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs.
|
||||
The NOLA constraint is met as we trim padded samples anyway.
|
||||
|
||||
Args:
|
||||
n_fft (int): Size of Fourier transform.
|
||||
hop_length (int): The distance between neighboring sliding window frames.
|
||||
win_length (int): The size of window frame and STFT filter.
|
||||
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, n_fft: int, hop_length: int, win_length: int, padding: str = "same"
|
||||
):
|
||||
super().__init__()
|
||||
if padding not in ["center", "same"]:
|
||||
raise ValueError("Padding must be 'center' or 'same'.")
|
||||
self.padding = padding
|
||||
self.n_fft = n_fft
|
||||
self.hop_length = hop_length
|
||||
self.win_length = win_length
|
||||
window = torch.hann_window(win_length)
|
||||
self.register_buffer("window", window)
|
||||
|
||||
def forward(self, spec: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram.
|
||||
|
||||
Args:
|
||||
spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size,
|
||||
N is the number of frequency bins, and T is the number of time frames.
|
||||
|
||||
Returns:
|
||||
Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal.
|
||||
"""
|
||||
if self.padding == "center":
|
||||
# Fallback to pytorch native implementation
|
||||
return torch.istft(
|
||||
spec,
|
||||
self.n_fft,
|
||||
self.hop_length,
|
||||
self.win_length,
|
||||
self.window,
|
||||
center=True,
|
||||
)
|
||||
elif self.padding == "same":
|
||||
# return torch.istft(
|
||||
# spec,
|
||||
# self.n_fft,
|
||||
# self.hop_length,
|
||||
# self.win_length,
|
||||
# self.window,
|
||||
# center=False,
|
||||
# )
|
||||
pad = (self.win_length - self.hop_length) // 2
|
||||
else:
|
||||
raise ValueError("Padding must be 'center' or 'same'.")
|
||||
|
||||
assert spec.dim() == 3, "Expected a 3D tensor as input"
|
||||
B, N, T = spec.shape
|
||||
|
||||
# Inverse FFT
|
||||
ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward")
|
||||
ifft = ifft * self.window[None, :, None]
|
||||
|
||||
# Overlap and Add
|
||||
output_size = (T - 1) * self.hop_length + self.win_length
|
||||
y = torch.nn.functional.fold(
|
||||
ifft,
|
||||
output_size=(1, output_size),
|
||||
kernel_size=(1, self.win_length),
|
||||
stride=(1, self.hop_length),
|
||||
)[:, 0, 0, :]
|
||||
|
||||
# Window envelope
|
||||
window_sq = self.window.square().expand(1, T, -1).transpose(1, 2)
|
||||
window_envelope = torch.nn.functional.fold(
|
||||
window_sq,
|
||||
output_size=(1, output_size),
|
||||
kernel_size=(1, self.win_length),
|
||||
stride=(1, self.hop_length),
|
||||
).squeeze()
|
||||
|
||||
# Normalize
|
||||
norm_indexes = window_envelope > 1e-11
|
||||
|
||||
y[:, norm_indexes] = y[:, norm_indexes] / window_envelope[norm_indexes]
|
||||
# assert (window_envelope > 1e-11).all()
|
||||
# y = y / window_envelope
|
||||
|
||||
return y
|
||||
|
||||
|
||||
class MDCT(nn.Module):
|
||||
"""
|
||||
Modified Discrete Cosine Transform (MDCT) module.
|
||||
|
||||
Args:
|
||||
frame_len (int): Length of the MDCT frame.
|
||||
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
||||
"""
|
||||
|
||||
def __init__(self, frame_len: int, padding: str = "same"):
|
||||
super().__init__()
|
||||
if padding not in ["center", "same"]:
|
||||
raise ValueError("Padding must be 'center' or 'same'.")
|
||||
self.padding = padding
|
||||
self.frame_len = frame_len
|
||||
N = frame_len // 2
|
||||
n0 = (N + 1) / 2
|
||||
window = torch.from_numpy(scipy.signal.cosine(frame_len)).float()
|
||||
self.register_buffer("window", window)
|
||||
|
||||
pre_twiddle = torch.exp(-1j * torch.pi * torch.arange(frame_len) / frame_len)
|
||||
post_twiddle = torch.exp(-1j * torch.pi * n0 * (torch.arange(N) + 0.5) / N)
|
||||
# view_as_real: NCCL Backend does not support ComplexFloat data type
|
||||
# https://github.com/pytorch/pytorch/issues/71613
|
||||
self.register_buffer("pre_twiddle", view_as_real(pre_twiddle))
|
||||
self.register_buffer("post_twiddle", view_as_real(post_twiddle))
|
||||
|
||||
def forward(self, audio: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Apply the Modified Discrete Cosine Transform (MDCT) to the input audio.
|
||||
|
||||
Args:
|
||||
audio (Tensor): Input audio waveform of shape (B, T), where B is the batch size
|
||||
and T is the length of the audio.
|
||||
|
||||
Returns:
|
||||
Tensor: MDCT coefficients of shape (B, L, N), where L is the number of output frames
|
||||
and N is the number of frequency bins.
|
||||
"""
|
||||
if self.padding == "center":
|
||||
audio = torch.nn.functional.pad(
|
||||
audio, (self.frame_len // 2, self.frame_len // 2)
|
||||
)
|
||||
elif self.padding == "same":
|
||||
# hop_length is 1/2 frame_len
|
||||
audio = torch.nn.functional.pad(
|
||||
audio, (self.frame_len // 4, self.frame_len // 4)
|
||||
)
|
||||
else:
|
||||
raise ValueError("Padding must be 'center' or 'same'.")
|
||||
|
||||
x = audio.unfold(-1, self.frame_len, self.frame_len // 2)
|
||||
N = self.frame_len // 2
|
||||
x = x * self.window.expand(x.shape)
|
||||
X = torch.fft.fft(
|
||||
x * view_as_complex(self.pre_twiddle).expand(x.shape), dim=-1
|
||||
)[..., :N]
|
||||
res = X * view_as_complex(self.post_twiddle).expand(X.shape) * np.sqrt(1 / N)
|
||||
return torch.real(res) * np.sqrt(2)
|
||||
|
||||
|
||||
class IMDCT(nn.Module):
|
||||
"""
|
||||
Inverse Modified Discrete Cosine Transform (IMDCT) module.
|
||||
|
||||
Args:
|
||||
frame_len (int): Length of the MDCT frame.
|
||||
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
||||
"""
|
||||
|
||||
def __init__(self, frame_len: int, padding: str = "same"):
|
||||
super().__init__()
|
||||
if padding not in ["center", "same"]:
|
||||
raise ValueError("Padding must be 'center' or 'same'.")
|
||||
self.padding = padding
|
||||
self.frame_len = frame_len
|
||||
N = frame_len // 2
|
||||
n0 = (N + 1) / 2
|
||||
window = torch.from_numpy(scipy.signal.cosine(frame_len)).float()
|
||||
self.register_buffer("window", window)
|
||||
|
||||
pre_twiddle = torch.exp(1j * torch.pi * n0 * torch.arange(N * 2) / N)
|
||||
post_twiddle = torch.exp(1j * torch.pi * (torch.arange(N * 2) + n0) / (N * 2))
|
||||
self.register_buffer("pre_twiddle", view_as_real(pre_twiddle))
|
||||
self.register_buffer("post_twiddle", view_as_real(post_twiddle))
|
||||
|
||||
def forward(self, X: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Apply the Inverse Modified Discrete Cosine Transform (IMDCT) to the input MDCT coefficients.
|
||||
|
||||
Args:
|
||||
X (Tensor): Input MDCT coefficients of shape (B, L, N), where B is the batch size,
|
||||
L is the number of frames, and N is the number of frequency bins.
|
||||
|
||||
Returns:
|
||||
Tensor: Reconstructed audio waveform of shape (B, T), where T is the length of the audio.
|
||||
"""
|
||||
B, L, N = X.shape
|
||||
Y = torch.zeros((B, L, N * 2), dtype=X.dtype, device=X.device)
|
||||
Y[..., :N] = X
|
||||
Y[..., N:] = -1 * torch.conj(torch.flip(X, dims=(-1,)))
|
||||
y = torch.fft.ifft(
|
||||
Y * view_as_complex(self.pre_twiddle).expand(Y.shape), dim=-1
|
||||
)
|
||||
y = (
|
||||
torch.real(y * view_as_complex(self.post_twiddle).expand(y.shape))
|
||||
* np.sqrt(N)
|
||||
* np.sqrt(2)
|
||||
)
|
||||
result = y * self.window.expand(y.shape)
|
||||
output_size = (1, (L + 1) * N)
|
||||
audio = torch.nn.functional.fold(
|
||||
result.transpose(1, 2),
|
||||
output_size=output_size,
|
||||
kernel_size=(1, self.frame_len),
|
||||
stride=(1, self.frame_len // 2),
|
||||
)[:, 0, 0, :]
|
||||
|
||||
if self.padding == "center":
|
||||
pad = self.frame_len // 2
|
||||
elif self.padding == "same":
|
||||
pad = self.frame_len // 4
|
||||
else:
|
||||
raise ValueError("Padding must be 'center' or 'same'.")
|
||||
|
||||
audio = audio[:, pad:-pad]
|
||||
return audio
|
1003
egs/ljspeech/TTS/vocos/train.py
Executable file
1003
egs/ljspeech/TTS/vocos/train.py
Executable file
File diff suppressed because it is too large
Load Diff
372
egs/ljspeech/TTS/vocos/tts_datamodule.py
Normal file
372
egs/ljspeech/TTS/vocos/tts_datamodule.py
Normal file
@ -0,0 +1,372 @@
|
||||
# Copyright 2021 Piotr Żelasko
|
||||
# Copyright 2022-2024 Xiaomi Corporation (Authors: Mingshuang Luo,
|
||||
# Zengwei Yao,
|
||||
# Wei Kang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from lhotse import CutSet, Fbank, FbankConfig, load_manifest_lazy
|
||||
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
DynamicBucketingSampler,
|
||||
PrecomputedFeatures,
|
||||
SimpleCutSampler,
|
||||
SpecAugment,
|
||||
SpeechSynthesisDataset,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||
AudioSamples,
|
||||
OnTheFlyFeatures,
|
||||
)
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
class _SeedWorkers:
|
||||
def __init__(self, seed: int):
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, worker_id: int):
|
||||
fix_random_seed(self.seed + worker_id)
|
||||
|
||||
|
||||
class LJSpeechTtsDataModule:
|
||||
"""
|
||||
DataModule for tts experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||
and test-other).
|
||||
|
||||
It contains all the common data pipeline modules used in ASR
|
||||
experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args: argparse.Namespace):
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(
|
||||
title="TTS data related options",
|
||||
description="These options are used for the preparation of "
|
||||
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||
"effective batch sizes, sampling strategies, applied data "
|
||||
"augmentations, etc.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--manifest-dir",
|
||||
type=Path,
|
||||
default=Path("data/fbank"),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
type=int,
|
||||
default=200.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a "
|
||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the DynamicBucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature "
|
||||
"extraction. Will drop existing precomputed feature manifests "
|
||||
"if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be "
|
||||
"shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--drop-last",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to drop last batch. Used by sampler.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the "
|
||||
"field: batch['cut'] with the cuts that "
|
||||
"were used to construct it.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=2,
|
||||
help="The number of training dataloader workers that "
|
||||
"collect the batches.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--sampling-rate",
|
||||
type=int,
|
||||
default=22050,
|
||||
help="The sampleing rate of ljspeech dataset",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--frame-shift",
|
||||
type=int,
|
||||
default=256,
|
||||
help="Frame shift.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--frame-length",
|
||||
type=int,
|
||||
default=1024,
|
||||
help="Frame shift.",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--input-strategy",
|
||||
type=str,
|
||||
default="PrecomputedFeatures",
|
||||
help="AudioSamples or PrecomputedFeatures",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--use-fft-mag",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Whether to use magnitude of fbank, false to use power energy.",
|
||||
)
|
||||
|
||||
def train_dataloaders(
|
||||
self,
|
||||
cuts_train: CutSet,
|
||||
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||
) -> DataLoader:
|
||||
"""
|
||||
Args:
|
||||
cuts_train:
|
||||
CutSet for training.
|
||||
sampler_state_dict:
|
||||
The state dict for the training sampler.
|
||||
"""
|
||||
logging.info("About to create train dataset")
|
||||
train = SpeechSynthesisDataset(
|
||||
return_text=True,
|
||||
return_tokens=False,
|
||||
feature_input_strategy=eval(self.args.input_strategy)(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.on_the_fly_feats:
|
||||
sampling_rate = self.args.sampling_rate
|
||||
config = FbankConfig(
|
||||
sampling_rate=sampling_rate,
|
||||
frame_length=self.args.frame_length / sampling_rate, # (in second),
|
||||
frame_shift=self.args.frame_shift / sampling_rate, # (in second)
|
||||
use_fft_mag=self.args.use_fft_mag,
|
||||
)
|
||||
train = SpeechSynthesisDataset(
|
||||
return_text=True,
|
||||
return_tokens=False,
|
||||
feature_input_strategy=OnTheFlyFeatures(Fbank(config)),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
|
||||
if self.args.bucketing_sampler:
|
||||
logging.info("Using DynamicBucketingSampler.")
|
||||
train_sampler = DynamicBucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
num_buckets=self.args.num_buckets,
|
||||
buffer_size=self.args.num_buckets * 2000,
|
||||
shuffle_buffer_size=self.args.num_buckets * 5000,
|
||||
drop_last=self.args.drop_last,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SimpleCutSampler.")
|
||||
train_sampler = SimpleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.max_duration,
|
||||
shuffle=self.args.shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
|
||||
if sampler_state_dict is not None:
|
||||
logging.info("Loading sampler state dict")
|
||||
train_sampler.load_state_dict(sampler_state_dict)
|
||||
|
||||
# 'seed' is derived from the current random state, which will have
|
||||
# previously been set in the main process.
|
||||
seed = torch.randint(0, 100000, ()).item()
|
||||
worker_init_fn = _SeedWorkers(seed)
|
||||
|
||||
train_dl = DataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
batch_size=None,
|
||||
num_workers=self.args.num_workers,
|
||||
persistent_workers=False,
|
||||
worker_init_fn=worker_init_fn,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
sampling_rate = self.args.sampling_rate
|
||||
config = FbankConfig(
|
||||
sampling_rate=sampling_rate,
|
||||
frame_length=self.args.frame_length / sampling_rate, # (in second),
|
||||
frame_shift=self.args.frame_shift / sampling_rate, # (in second)
|
||||
use_fft_mag=self.args.use_fft_mag,
|
||||
)
|
||||
validate = SpeechSynthesisDataset(
|
||||
return_text=True,
|
||||
return_tokens=False,
|
||||
feature_input_strategy=OnTheFlyFeatures(Fbank(config)),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = SpeechSynthesisDataset(
|
||||
return_text=True,
|
||||
return_tokens=False,
|
||||
feature_input_strategy=eval(self.args.input_strategy)(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
valid_sampler = DynamicBucketingSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.max_duration,
|
||||
num_buckets=self.args.num_buckets,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create valid dataloader")
|
||||
valid_dl = DataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
batch_size=None,
|
||||
num_workers=2,
|
||||
persistent_workers=False,
|
||||
)
|
||||
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||
logging.info("About to create test dataset")
|
||||
if self.args.on_the_fly_feats:
|
||||
sampling_rate = self.args.sampling_rate
|
||||
config = FbankConfig(
|
||||
sampling_rate=sampling_rate,
|
||||
frame_length=self.args.frame_length / sampling_rate, # (in second),
|
||||
frame_shift=self.args.frame_shift / sampling_rate, # (in second)
|
||||
use_fft_mag=self.args.use_fft_mag,
|
||||
)
|
||||
test = SpeechSynthesisDataset(
|
||||
return_text=True,
|
||||
return_tokens=False,
|
||||
feature_input_strategy=OnTheFlyFeatures(Fbank(config)),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
else:
|
||||
test = SpeechSynthesisDataset(
|
||||
return_text=True,
|
||||
return_tokens=False,
|
||||
feature_input_strategy=eval(self.args.input_strategy)(),
|
||||
return_cuts=self.args.return_cuts,
|
||||
)
|
||||
test_sampler = DynamicBucketingSampler(
|
||||
cuts,
|
||||
max_duration=self.args.max_duration,
|
||||
num_buckets=self.args.num_buckets,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create test dataloader")
|
||||
test_dl = DataLoader(
|
||||
test,
|
||||
batch_size=None,
|
||||
sampler=test_sampler,
|
||||
num_workers=self.args.num_workers,
|
||||
)
|
||||
return test_dl
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "ljspeech_cuts_train.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts(self) -> CutSet:
|
||||
logging.info("About to get validation cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "ljspeech_cuts_valid.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts_finetune(self) -> CutSet:
|
||||
logging.info("About to get train cuts finetune")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "ljspeech_cuts_train_finetune.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts_finetune(self) -> CutSet:
|
||||
logging.info("About to get validation cuts finetune")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "ljspeech_cuts_valid_finetune.jsonl.gz"
|
||||
)
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> CutSet:
|
||||
logging.info("About to get test cuts")
|
||||
return load_manifest_lazy(
|
||||
self.args.manifest_dir / "ljspeech_cuts_test.jsonl.gz"
|
||||
)
|
205
egs/ljspeech/TTS/vocos/utils.py
Normal file
205
egs/ljspeech/TTS/vocos/utils.py
Normal file
@ -0,0 +1,205 @@
|
||||
import glob
|
||||
import os
|
||||
import logging
|
||||
import matplotlib
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
from torch.nn.utils import weight_norm
|
||||
from torch.optim.lr_scheduler import LRScheduler
|
||||
from torch.optim import Optimizer
|
||||
from torch.cuda.amp import GradScaler
|
||||
from lhotse.dataset.sampling.base import CutSampler
|
||||
from torch import Tensor
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.optim import Optimizer
|
||||
from torch.optim.lr_scheduler import LambdaLR
|
||||
|
||||
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.pylab as plt
|
||||
|
||||
|
||||
def plot_spectrogram(spectrogram):
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
|
||||
fig.canvas.draw()
|
||||
plt.close()
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def load_checkpoint(
|
||||
filename: Path,
|
||||
model: nn.Module,
|
||||
model_avg: Optional[nn.Module] = None,
|
||||
optimizer_g: Optional[Optimizer] = None,
|
||||
optimizer_d: Optional[Optimizer] = None,
|
||||
scheduler_g: Optional[LRScheduler] = None,
|
||||
scheduler_d: Optional[LRScheduler] = None,
|
||||
scaler: Optional[GradScaler] = None,
|
||||
sampler: Optional[CutSampler] = None,
|
||||
strict: bool = False,
|
||||
) -> Dict[str, Any]:
|
||||
logging.info(f"Loading checkpoint from {filename}")
|
||||
checkpoint = torch.load(filename, map_location="cpu")
|
||||
|
||||
if next(iter(checkpoint["model"])).startswith("module."):
|
||||
logging.info("Loading checkpoint saved by DDP")
|
||||
|
||||
dst_state_dict = model.state_dict()
|
||||
src_state_dict = checkpoint["model"]
|
||||
for key in dst_state_dict.keys():
|
||||
src_key = "{}.{}".format("module", key)
|
||||
dst_state_dict[key] = src_state_dict.pop(src_key)
|
||||
assert len(src_state_dict) == 0
|
||||
model.load_state_dict(dst_state_dict, strict=strict)
|
||||
else:
|
||||
model.load_state_dict(checkpoint["model"], strict=strict)
|
||||
|
||||
checkpoint.pop("model")
|
||||
|
||||
if model_avg is not None and "model_avg" in checkpoint:
|
||||
logging.info("Loading averaged model")
|
||||
model_avg.load_state_dict(checkpoint["model_avg"], strict=strict)
|
||||
checkpoint.pop("model_avg")
|
||||
|
||||
def load(name, obj):
|
||||
s = checkpoint.get(name, None)
|
||||
if obj and s:
|
||||
obj.load_state_dict(s)
|
||||
checkpoint.pop(name)
|
||||
|
||||
load("optimizer_g", optimizer_g)
|
||||
load("optimizer_d", optimizer_d)
|
||||
load("scheduler_g", scheduler_g)
|
||||
load("scheduler_d", scheduler_d)
|
||||
load("grad_scaler", scaler)
|
||||
load("sampler", sampler)
|
||||
|
||||
return checkpoint
|
||||
|
||||
|
||||
def save_checkpoint(
|
||||
filename: Path,
|
||||
model: Union[nn.Module, DDP],
|
||||
model_avg: Optional[nn.Module] = None,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
optimizer_g: Optional[Optimizer] = None,
|
||||
optimizer_d: Optional[Optimizer] = None,
|
||||
scheduler_g: Optional[LRScheduler] = None,
|
||||
scheduler_d: Optional[LRScheduler] = None,
|
||||
scaler: Optional[GradScaler] = None,
|
||||
sampler: Optional[CutSampler] = None,
|
||||
rank: int = 0,
|
||||
) -> None:
|
||||
"""Save training information to a file.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
The checkpoint filename.
|
||||
model:
|
||||
The model to be saved. We only save its `state_dict()`.
|
||||
model_avg:
|
||||
The stored model averaged from the start of training.
|
||||
params:
|
||||
User defined parameters, e.g., epoch, loss.
|
||||
optimizer:
|
||||
The optimizer to be saved. We only save its `state_dict()`.
|
||||
scheduler:
|
||||
The scheduler to be saved. We only save its `state_dict()`.
|
||||
scalar:
|
||||
The GradScaler to be saved. We only save its `state_dict()`.
|
||||
rank:
|
||||
Used in DDP. We save checkpoint only for the node whose rank is 0.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
if rank != 0:
|
||||
return
|
||||
|
||||
logging.info(f"Saving checkpoint to {filename}")
|
||||
|
||||
if isinstance(model, DDP):
|
||||
model = model.module
|
||||
|
||||
checkpoint = {
|
||||
"model": model.state_dict(),
|
||||
"optimizer_g": optimizer_g.state_dict() if optimizer_g is not None else None,
|
||||
"optimizer_d": optimizer_d.state_dict() if optimizer_d is not None else None,
|
||||
"scheduler_g": scheduler_g.state_dict() if scheduler_g is not None else None,
|
||||
"scheduler_d": scheduler_d.state_dict() if scheduler_d is not None else None,
|
||||
"grad_scaler": scaler.state_dict() if scaler is not None else None,
|
||||
"sampler": sampler.state_dict() if sampler is not None else None,
|
||||
}
|
||||
|
||||
if model_avg is not None:
|
||||
checkpoint["model_avg"] = model_avg.to(torch.float32).state_dict()
|
||||
|
||||
if params:
|
||||
for k, v in params.items():
|
||||
assert k not in checkpoint
|
||||
checkpoint[k] = v
|
||||
|
||||
torch.save(checkpoint, filename)
|
||||
|
||||
|
||||
def _get_cosine_schedule_with_warmup_lr_lambda(
|
||||
current_step: int,
|
||||
*,
|
||||
num_warmup_steps: int,
|
||||
num_training_steps: int,
|
||||
num_cycles: float,
|
||||
min_lr_rate: float = 0.0,
|
||||
):
|
||||
if current_step < num_warmup_steps:
|
||||
return float(current_step) / float(max(1, num_warmup_steps))
|
||||
progress = float(current_step - num_warmup_steps) / float(
|
||||
max(1, num_training_steps - num_warmup_steps)
|
||||
)
|
||||
factor = 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))
|
||||
factor = factor * (1 - min_lr_rate) + min_lr_rate
|
||||
return max(0, factor)
|
||||
|
||||
|
||||
def get_cosine_schedule_with_warmup(
|
||||
optimizer: Optimizer,
|
||||
num_warmup_steps: int,
|
||||
num_training_steps: int,
|
||||
num_cycles: float = 0.5,
|
||||
last_epoch: int = -1,
|
||||
):
|
||||
"""
|
||||
Create a schedule with a learning rate that decreases following the values of the cosine function between the
|
||||
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
|
||||
initial lr set in the optimizer.
|
||||
|
||||
Args:
|
||||
optimizer ([`~torch.optim.Optimizer`]):
|
||||
The optimizer for which to schedule the learning rate.
|
||||
num_warmup_steps (`int`):
|
||||
The number of steps for the warmup phase.
|
||||
num_training_steps (`int`):
|
||||
The total number of training steps.
|
||||
num_cycles (`float`, *optional*, defaults to 0.5):
|
||||
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
|
||||
following a half-cosine).
|
||||
last_epoch (`int`, *optional*, defaults to -1):
|
||||
The index of the last epoch when resuming training.
|
||||
|
||||
Return:
|
||||
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
||||
"""
|
||||
|
||||
lr_lambda = partial(
|
||||
_get_cosine_schedule_with_warmup_lr_lambda,
|
||||
num_warmup_steps=num_warmup_steps,
|
||||
num_training_steps=num_training_steps,
|
||||
num_cycles=num_cycles,
|
||||
)
|
||||
return LambdaLR(optimizer, lr_lambda, last_epoch)
|
Loading…
x
Reference in New Issue
Block a user