2022-05-30 15:09:51 +08:00

288 lines
11 KiB
Python

import math
import random
from typing import Dict, Optional, Tuple
import numpy as np
import torch
class SpecAugment(torch.nn.Module):
"""
SpecAugment performs three augmentations:
- time warping of the feature matrix
- masking of ranges of features (frequency bands)
- masking of ranges of frames (time)
The current implementation works with batches, but processes each example separately
in a loop rather than simultaneously to achieve different augmentation parameters for
each example.
"""
def __init__(
self,
time_warp_factor: Optional[int] = 80,
num_feature_masks: int = 2,
features_mask_size: int = 27,
num_frame_masks: int = 10,
frames_mask_size: int = 100,
max_frames_mask_fraction: float = 0.15,
p=0.9,
):
"""
SpecAugment's constructor.
:param time_warp_factor: parameter for the time warping; larger values mean more warping.
Set to ``None``, or less than ``1``, to disable.
:param num_feature_masks: how many feature masks should be applied. Set to ``0`` to disable.
:param features_mask_size: the width of the feature mask (expressed in the number of masked feature bins).
This is the ``F`` parameter from the SpecAugment paper.
:param num_frame_masks: the number of masking regions for utterances. Set to ``0`` to disable.
:param frames_mask_size: the width of the frame (temporal) masks (expressed in the number of masked frames).
This is the ``T`` parameter from the SpecAugment paper.
:param max_frames_mask_fraction: limits the size of the frame (temporal) mask to this value times the length
of the utterance (or supervision segment).
This is the parameter denoted by ``p`` in the SpecAugment paper.
:param p: the probability of applying this transform.
It is different from ``p`` in the SpecAugment paper!
"""
super().__init__()
assert 0 <= p <= 1
assert num_feature_masks >= 0
assert num_frame_masks > 0
assert features_mask_size > 0
assert frames_mask_size > 0
self.time_warp_factor = time_warp_factor
self.num_feature_masks = num_feature_masks
self.features_mask_size = features_mask_size
self.num_frame_masks = num_frame_masks
self.frames_mask_size = frames_mask_size
self.max_frames_mask_fraction = max_frames_mask_fraction
self.p = p
def forward(
self,
features: torch.Tensor,
supervision_segments: Optional[torch.IntTensor] = None,
*args,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Computes SpecAugment for a batch of feature matrices.
Since the batch will usually already be padded, the user can optionally
provide a ``supervision_segments`` tensor that will be used to apply SpecAugment
only to selected areas of the input. The format of this input is described below.
:param features: a batch of feature matrices with shape ``(B, T, F)``.
:param supervision_segments: an int tensor of shape ``(S, 3)``. ``S`` is the number of
supervision segments that exist in ``features`` -- there may be either
less or more than the batch size.
The second dimension encoder three kinds of information:
the sequence index of the corresponding feature matrix in `features`,
the start frame index, and the number of frames for each segment.
:return: an augmented tensor of shape ``(B, T, F)``.
"""
assert len(features.shape) == 3, (
"SpecAugment only supports batches of "
"single-channel feature matrices."
)
features = features.clone()
# 1 (True) represents masked area;
# 0 (False) represents original un-masked area.
time_masked_area = torch.zeros_like(features)
if supervision_segments is None:
# No supervisions - apply spec augment to full feature matrices.
for sequence_idx in range(features.size(0)):
(
features[sequence_idx],
time_masked_area[sequence_idx],
) = self._forward_single(features[sequence_idx])
else:
# Supervisions provided - we will apply time warping only on the supervised areas.
for sequence_idx, start_frame, num_frames in supervision_segments:
end_frame = start_frame + num_frames
(
features[sequence_idx, start_frame:end_frame],
time_masked_area[sequence_idx, start_frame:end_frame],
) = self._forward_single(
features[sequence_idx, start_frame:end_frame],
warp=True,
mask=False,
)
# ... and then time-mask the full feature matrices. Note that in this mode,
# it might happen that masks are applied to different sequences/examples
# than the time warping.
for sequence_idx in range(features.size(0)):
(
features[sequence_idx],
time_masked_area[sequence_idx],
) = self._forward_single(
features[sequence_idx], warp=False, mask=True
)
return features, time_masked_area
def _forward_single(
self, features: torch.Tensor, warp: bool = True, mask: bool = True
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply SpecAugment to a single feature matrix of shape (T, F).
"""
time_masked_area = torch.zeros_like(features)
if random.random() > self.p:
# Randomly choose whether this transform is applied
# No augmentation, no masked area.
return features, time_masked_area
if warp:
if self.time_warp_factor is not None and self.time_warp_factor >= 1:
features = time_warp(features, factor=self.time_warp_factor)
if mask:
mean = features.mean()
# Frequency masking
features, _ = mask_along_axis_optimized(
features,
mask_size=self.features_mask_size,
mask_times=self.num_feature_masks,
mask_value=mean,
axis=2,
)
# Time masking
max_tot_mask_frames = self.max_frames_mask_fraction * features.size(
0
)
num_frame_masks = min(
self.num_frame_masks,
math.ceil(max_tot_mask_frames / self.frames_mask_size),
)
max_mask_frames = min(
self.frames_mask_size, max_tot_mask_frames // num_frame_masks
)
features, time_masked_area = mask_along_axis_optimized(
features,
mask_size=max_mask_frames,
mask_times=num_frame_masks,
mask_value=mean,
axis=1,
)
return features, time_masked_area
def state_dict(self) -> Dict:
return dict(
time_warp_factor=self.time_warp_factor,
num_feature_masks=self.num_feature_masks,
features_mask_size=self.features_mask_size,
num_frame_masks=self.num_frame_masks,
frames_mask_size=self.frames_mask_size,
max_frames_mask_fraction=self.max_frames_mask_fraction,
p=self.p,
)
def load_state_dict(self, state_dict: Dict):
self.time_warp_factor = state_dict.get(
"time_warp_factor", self.time_warp_factor
)
self.num_feature_masks = state_dict.get(
"num_feature_masks", self.num_feature_masks
)
self.features_mask_size = state_dict.get(
"features_mask_size", self.features_mask_size
)
self.num_frame_masks = state_dict.get(
"num_frame_masks", self.num_frame_masks
)
self.frames_mask_size = state_dict.get(
"frames_mask_size", self.frames_mask_size
)
self.max_frames_mask_fraction = state_dict.get(
"max_frames_mask_fraction", self.max_frames_mask_fraction
)
self.p = state_dict.get("p", self.p)
def mask_along_axis_optimized(
features: torch.Tensor,
mask_size: int,
mask_times: int,
mask_value: float,
axis: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply Frequency and Time masking along axis.
Frequency and Time masking as described in the SpecAugment paper.
:param features: input tensor of shape ``(T, F)``
:mask_size: the width size for masking.
:mask_times: the number of masking regions.
:mask_value: Value to assign to the masked regions.
:axis: Axis to apply masking on (1 -> time, 2 -> frequency)
"""
if axis not in [1, 2]:
raise ValueError("Only Frequency and Time masking are supported!")
# 1 (True) represents masked area;
# 0 (False) represents original un-masked area.
masked_area = torch.zeros_like(features)
features = features.unsqueeze(0)
masked_area = masked_area.unsqueeze(0)
features = features.reshape([-1] + list(features.size()[-2:]))
values = torch.randint(int(0), int(mask_size), (1, mask_times))
min_values = torch.rand(1, mask_times) * (features.size(axis) - values)
mask_starts = (min_values.long()).squeeze()
mask_ends = (min_values.long() + values.long()).squeeze()
if axis == 1:
if mask_times == 1:
features[:, mask_starts:mask_ends] = mask_value
return features.squeeze(0), masked_area
for (mask_start, mask_end) in zip(mask_starts, mask_ends):
features[:, mask_start:mask_end] = mask_value
masked_area[:, mask_start:mask_end] = 1
else:
if mask_times == 1:
features[:, :, mask_starts:mask_ends] = mask_value
masked_area[:, :, mask_starts:mask_ends] = 1
return features.squeeze(0), masked_area
for (mask_start, mask_end) in zip(mask_starts, mask_ends):
features[:, :, mask_start:mask_end] = mask_value
masked_area[:, :, mask_start:mask_end] = 1
features = features.squeeze(0)
masked_area = masked_area.squeeze(0)
return features, masked_area
def time_warp(features: torch.Tensor, factor: int) -> torch.Tensor:
"""
Time warping as described in the SpecAugment paper.
Implementation based on Espresso:
https://github.com/freewym/espresso/blob/master/espresso/tools/specaug_interpolate.py#L51
:param features: input tensor of shape ``(T, F)``
:param factor: time warping parameter.
:return: a warped tensor of shape ``(T, F)``
"""
t = features.size(0)
if t - factor <= factor + 1:
return features
center = np.random.randint(factor + 1, t - factor)
warped = np.random.randint(center - factor, center + factor + 1)
if warped == center:
return features
features = features.unsqueeze(0).unsqueeze(0)
left = torch.nn.functional.interpolate(
features[:, :, :center, :],
size=(warped, features.size(3)),
mode="bicubic",
align_corners=False,
)
right = torch.nn.functional.interpolate(
features[:, :, center:, :],
size=(t - warped, features.size(3)),
mode="bicubic",
align_corners=False,
)
return torch.cat((left, right), dim=2).squeeze(0).squeeze(0)