mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-08 08:34:19 +00:00
predicted masked codebook indexes only
This commit is contained in:
parent
0c33543ce7
commit
90024c308f
@ -32,7 +32,6 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||
AudioSamples,
|
||||
@ -41,6 +40,7 @@ from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||
from lhotse.utils import fix_random_seed
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from aug import SpecAugment
|
||||
from icefall.utils import str2bool
|
||||
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
import math
|
||||
import random
|
||||
from typing import Dict, Optional
|
||||
from typing import Dict, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@ -65,7 +65,7 @@ class SpecAugment(torch.nn.Module):
|
||||
supervision_segments: Optional[torch.IntTensor] = None,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Computes SpecAugment for a batch of feature matrices.
|
||||
|
||||
@ -87,19 +87,25 @@ class SpecAugment(torch.nn.Module):
|
||||
"single-channel feature matrices."
|
||||
)
|
||||
features = features.clone()
|
||||
# 1 (True) represents masked area;
|
||||
# 0 (False) represents original un-masked area.
|
||||
time_masked_area = torch.zeros_like(features)
|
||||
if supervision_segments is None:
|
||||
# No supervisions - apply spec augment to full feature matrices.
|
||||
for sequence_idx in range(features.size(0)):
|
||||
features[sequence_idx] = self._forward_single(
|
||||
features[sequence_idx]
|
||||
)
|
||||
(
|
||||
features[sequence_idx],
|
||||
time_masked_area[sequence_idx],
|
||||
) = self._forward_single(features[sequence_idx])
|
||||
|
||||
else:
|
||||
# Supervisions provided - we will apply time warping only on the supervised areas.
|
||||
for sequence_idx, start_frame, num_frames in supervision_segments:
|
||||
end_frame = start_frame + num_frames
|
||||
features[
|
||||
sequence_idx, start_frame:end_frame
|
||||
] = self._forward_single(
|
||||
(
|
||||
features[sequence_idx, start_frame:end_frame],
|
||||
time_masked_area[sequence_idx, start_frame:end_frame],
|
||||
) = self._forward_single(
|
||||
features[sequence_idx, start_frame:end_frame],
|
||||
warp=True,
|
||||
mask=False,
|
||||
@ -108,27 +114,33 @@ class SpecAugment(torch.nn.Module):
|
||||
# it might happen that masks are applied to different sequences/examples
|
||||
# than the time warping.
|
||||
for sequence_idx in range(features.size(0)):
|
||||
features[sequence_idx] = self._forward_single(
|
||||
(
|
||||
features[sequence_idx],
|
||||
time_masked_area[sequence_idx],
|
||||
) = self._forward_single(
|
||||
features[sequence_idx], warp=False, mask=True
|
||||
)
|
||||
return features
|
||||
|
||||
return features, time_masked_area
|
||||
|
||||
def _forward_single(
|
||||
self, features: torch.Tensor, warp: bool = True, mask: bool = True
|
||||
) -> torch.Tensor:
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Apply SpecAugment to a single feature matrix of shape (T, F).
|
||||
"""
|
||||
time_masked_area = torch.zeros_like(features)
|
||||
if random.random() > self.p:
|
||||
# Randomly choose whether this transform is applied
|
||||
return features
|
||||
# No augmentation, no masked area.
|
||||
return features, time_masked_area
|
||||
if warp:
|
||||
if self.time_warp_factor is not None and self.time_warp_factor >= 1:
|
||||
features = time_warp(features, factor=self.time_warp_factor)
|
||||
if mask:
|
||||
mean = features.mean()
|
||||
# Frequency masking
|
||||
features = mask_along_axis_optimized(
|
||||
features, _ = mask_along_axis_optimized(
|
||||
features,
|
||||
mask_size=self.features_mask_size,
|
||||
mask_times=self.num_feature_masks,
|
||||
@ -146,7 +158,7 @@ class SpecAugment(torch.nn.Module):
|
||||
max_mask_frames = min(
|
||||
self.frames_mask_size, max_tot_mask_frames // num_frame_masks
|
||||
)
|
||||
features = mask_along_axis_optimized(
|
||||
features, time_masked_area = mask_along_axis_optimized(
|
||||
features,
|
||||
mask_size=max_mask_frames,
|
||||
mask_times=num_frame_masks,
|
||||
@ -154,7 +166,7 @@ class SpecAugment(torch.nn.Module):
|
||||
axis=1,
|
||||
)
|
||||
|
||||
return features
|
||||
return features, time_masked_area
|
||||
|
||||
def state_dict(self) -> Dict:
|
||||
return dict(
|
||||
@ -195,7 +207,7 @@ def mask_along_axis_optimized(
|
||||
mask_times: int,
|
||||
mask_value: float,
|
||||
axis: int,
|
||||
) -> torch.Tensor:
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Apply Frequency and Time masking along axis.
|
||||
Frequency and Time masking as described in the SpecAugment paper.
|
||||
@ -209,7 +221,11 @@ def mask_along_axis_optimized(
|
||||
if axis not in [1, 2]:
|
||||
raise ValueError("Only Frequency and Time masking are supported!")
|
||||
|
||||
# 1 (True) represents masked area;
|
||||
# 0 (False) represents original un-masked area.
|
||||
masked_area = torch.zeros_like(features)
|
||||
features = features.unsqueeze(0)
|
||||
masked_area = masked_area.unsqueeze(0)
|
||||
features = features.reshape([-1] + list(features.size()[-2:]))
|
||||
|
||||
values = torch.randint(int(0), int(mask_size), (1, mask_times))
|
||||
@ -220,18 +236,22 @@ def mask_along_axis_optimized(
|
||||
if axis == 1:
|
||||
if mask_times == 1:
|
||||
features[:, mask_starts:mask_ends] = mask_value
|
||||
return features.squeeze(0)
|
||||
return features.squeeze(0), masked_area
|
||||
for (mask_start, mask_end) in zip(mask_starts, mask_ends):
|
||||
features[:, mask_start:mask_end] = mask_value
|
||||
masked_area[:, mask_start:mask_end] = 1
|
||||
else:
|
||||
if mask_times == 1:
|
||||
features[:, :, mask_starts:mask_ends] = mask_value
|
||||
return features.squeeze(0)
|
||||
masked_area[:, :, mask_starts:mask_ends] = 1
|
||||
return features.squeeze(0), masked_area
|
||||
for (mask_start, mask_end) in zip(mask_starts, mask_ends):
|
||||
features[:, :, mask_start:mask_end] = mask_value
|
||||
masked_area[:, :, mask_start:mask_end] = 1
|
||||
|
||||
features = features.squeeze(0)
|
||||
return features
|
||||
masked_area = masked_area.squeeze(0)
|
||||
return features, masked_area
|
||||
|
||||
|
||||
def time_warp(features: torch.Tensor, factor: int) -> torch.Tensor:
|
||||
|
@ -75,7 +75,9 @@ class Transducer(nn.Module):
|
||||
self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size)
|
||||
if num_codebooks > 0:
|
||||
self.codebook_loss_net = JointCodebookLoss(
|
||||
predictor_channels=encoder_dim, num_codebooks=num_codebooks
|
||||
predictor_channels=encoder_dim,
|
||||
num_codebooks=num_codebooks,
|
||||
reduction="none",
|
||||
)
|
||||
|
||||
def forward(
|
||||
@ -88,6 +90,8 @@ class Transducer(nn.Module):
|
||||
lm_scale: float = 0.0,
|
||||
warmup: float = 1.0,
|
||||
codebook_indexes: torch.Tensor = None,
|
||||
time_masked_area: torch.Tensor = None,
|
||||
masked_scale: float = 1.0,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
@ -113,6 +117,11 @@ class Transducer(nn.Module):
|
||||
warmup > 1 "are fully warmed up" and all modules will be active.
|
||||
codebook_indexes:
|
||||
codebook_indexes extracted from a teacher model.
|
||||
time_masked_area:
|
||||
masked area by SpecAugment, 1 represents masked.
|
||||
masked_scale:
|
||||
scale of codebook loss of masked area.
|
||||
the unmasked_scale = 1 - masked_scale
|
||||
Returns:
|
||||
Return the transducer loss.
|
||||
|
||||
@ -140,6 +149,21 @@ class Transducer(nn.Module):
|
||||
codebook_loss = self.codebook_loss_net(
|
||||
middle_layer_output, codebook_indexes
|
||||
)
|
||||
codebook_loss = codebook_loss.reshape(codebook_indexes.shape)
|
||||
target_t = codebook_loss.shape[1]
|
||||
time_masked_area = time_masked_area.bool()
|
||||
time_masked_area = time_masked_area[
|
||||
:, : target_t * 4 : 4, 0 # noqa E203
|
||||
]
|
||||
assert time_masked_area.shape == codebook_loss.shape[:-1]
|
||||
time_masked_area = time_masked_area.unsqueeze(2).to(
|
||||
codebook_loss.device
|
||||
)
|
||||
masked_loss = (time_masked_area * codebook_loss).sum()
|
||||
unmasked_loss = (~time_masked_area * codebook_loss).sum()
|
||||
codebook_loss = (
|
||||
masked_scale * masked_loss + (1 - masked_scale) * unmasked_loss
|
||||
)
|
||||
else:
|
||||
# when codebook index is not available.
|
||||
codebook_loss = None
|
||||
|
@ -602,7 +602,7 @@ def compute_loss(
|
||||
if isinstance(model, DDP)
|
||||
else next(model.parameters()).device
|
||||
)
|
||||
feature = batch["inputs"]
|
||||
feature, time_masked_area = batch["inputs"]
|
||||
# at entry, feature is (N, T, C)
|
||||
assert feature.ndim == 3
|
||||
feature = feature.to(device)
|
||||
@ -631,6 +631,7 @@ def compute_loss(
|
||||
lm_scale=params.lm_scale,
|
||||
warmup=warmup,
|
||||
codebook_indexes=codebook_indexes,
|
||||
time_masked_area=time_masked_area,
|
||||
)
|
||||
# after the main warmup step, we keep pruned_loss_scale small
|
||||
# for the same amount of time (model_warm_step), to avoid
|
||||
|
Loading…
x
Reference in New Issue
Block a user